Adaptive Visual Target Tracking Based on Label Consistent K-Svd Sparse Coding and Kernel Particle Filter

We propose an adaptive visual target tracking algorithm based on Label-Consistent K -Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patche...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 1633 - 1637
Hlavní autori: Yang, Jinlong, Chen, Xiaoping, Hu, Yu Hen, Liu, Jianjun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2018
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose an adaptive visual target tracking algorithm based on Label-Consistent K -Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patches to simultaneously estimate a set of low-dimension dictionary and classification parameters (CP). To track the target over time, a kernel particle filter (KPF) is proposed that integrates both local and global motion information of the target. An adaptive template updating scheme is also developed to improve the robustness of the tracker. Experimental results demonstrate superior performance of the proposed algorithm over state-of-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation and scale changes.
ISSN:2379-190X
DOI:10.1109/ICASSP.2018.8462675