Estimating curvatures and their derivatives on triangle meshes
The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimat...
Uložené v:
| Vydané v: | 3D Data Processing, Visualization and Transmission s. 486 - 493 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2004
|
| Predmet: | |
| ISBN: | 9780769522234, 0769522238 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimating per-vertex normals. The technique is efficient in space and time, and results in significantly fewer outlier estimates while more broadly offering accuracy comparable to existing methods. It generalizes naturally to computing derivatives of curvature and higher-order surface differentials. |
|---|---|
| ISBN: | 9780769522234 0769522238 |
| DOI: | 10.1109/TDPVT.2004.1335277 |

