Estimating curvatures and their derivatives on triangle meshes

The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:3D Data Processing, Visualization and Transmission s. 486 - 493
Hlavný autor: Rusinkiewicz, S.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 2004
Predmet:
ISBN:9780769522234, 0769522238
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimating per-vertex normals. The technique is efficient in space and time, and results in significantly fewer outlier estimates while more broadly offering accuracy comparable to existing methods. It generalizes naturally to computing derivatives of curvature and higher-order surface differentials.
ISBN:9780769522234
0769522238
DOI:10.1109/TDPVT.2004.1335277