Unsupervised Feature Selection with Feature Clustering

As an effective technique for dimensionality reduction, feature selection has a broad application in different research areas. In this paper, we present a feature selection method based on a novel feature clustering procedure, which aims at partitioning the features into different clusters such that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 9 - 15
Hlavní autori: Cheung, Yiu-Ming, Jia, Hong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2012
Predmet:
ISBN:9781467360579, 1467360570
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:As an effective technique for dimensionality reduction, feature selection has a broad application in different research areas. In this paper, we present a feature selection method based on a novel feature clustering procedure, which aims at partitioning the features into different clusters such that the features in the same cluster contain similar structural information of the given instances. Subsequently, since the obtained feature subset consists of features from variant clusters, the similarity between selected features will be low. This allows us to reserve the most data structural information with the minimum number of features. Experimental results on different benchmark data sets demonstrate the superiority of the proposed method.
ISBN:9781467360579
1467360570
DOI:10.1109/WI-IAT.2012.259