Unsupervised Feature Selection with Feature Clustering
As an effective technique for dimensionality reduction, feature selection has a broad application in different research areas. In this paper, we present a feature selection method based on a novel feature clustering procedure, which aims at partitioning the features into different clusters such that...
Uložené v:
| Vydané v: | 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 9 - 15 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2012
|
| Predmet: | |
| ISBN: | 9781467360579, 1467360570 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | As an effective technique for dimensionality reduction, feature selection has a broad application in different research areas. In this paper, we present a feature selection method based on a novel feature clustering procedure, which aims at partitioning the features into different clusters such that the features in the same cluster contain similar structural information of the given instances. Subsequently, since the obtained feature subset consists of features from variant clusters, the similarity between selected features will be low. This allows us to reserve the most data structural information with the minimum number of features. Experimental results on different benchmark data sets demonstrate the superiority of the proposed method. |
|---|---|
| ISBN: | 9781467360579 1467360570 |
| DOI: | 10.1109/WI-IAT.2012.259 |

