Object detection and object tracking in front of the vehicle using front view camera

Modern vehicles are equipped with the different systems that help driver in the driving process ensuring safer and more comfortable driving. These systems are called Advanced Driver Assistance Systems (ADAS) and are step toward fully autonomous driving. The integral part of autonomous driving is an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 Zooming Innovation in Consumer Technologies Conference (ZINC) s. 27 - 32
Hlavní autoři: Ciberlin, Juraj, Grbic, Ratko, Teslic, Nikola, Pilipovic, Milos
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modern vehicles are equipped with the different systems that help driver in the driving process ensuring safer and more comfortable driving. These systems are called Advanced Driver Assistance Systems (ADAS) and are step toward fully autonomous driving. The integral part of autonomous driving is an object detection and tracking by using front view camera which provides necessary information for emergency braking, collision avoidance, path planning, etc. In this paper, one possible approach to object detection and tracking in autonomous driving is presented. Two object detection methods are implemented and tested: Viola-Jones algorithm and YOLOv3. The Viola-Jones algorithm is used to create object detectors which detections are tracked in a video sequence. Nine object detectors were trained and they are divided into four groups (vehicle detectors, pedestrian detector, traffic light detector and traffic sign detectors). In second case, the YOLOv3 model was used for object detection. Both methods are evaluated in terms of accuracy and processing speed. For the purpose of object tracking, Median Flow tracking method and correlation tracking method are implemented and evaluated.
AbstractList Modern vehicles are equipped with the different systems that help driver in the driving process ensuring safer and more comfortable driving. These systems are called Advanced Driver Assistance Systems (ADAS) and are step toward fully autonomous driving. The integral part of autonomous driving is an object detection and tracking by using front view camera which provides necessary information for emergency braking, collision avoidance, path planning, etc. In this paper, one possible approach to object detection and tracking in autonomous driving is presented. Two object detection methods are implemented and tested: Viola-Jones algorithm and YOLOv3. The Viola-Jones algorithm is used to create object detectors which detections are tracked in a video sequence. Nine object detectors were trained and they are divided into four groups (vehicle detectors, pedestrian detector, traffic light detector and traffic sign detectors). In second case, the YOLOv3 model was used for object detection. Both methods are evaluated in terms of accuracy and processing speed. For the purpose of object tracking, Median Flow tracking method and correlation tracking method are implemented and evaluated.
Author Teslic, Nikola
Grbic, Ratko
Ciberlin, Juraj
Pilipovic, Milos
Author_xml – sequence: 1
  givenname: Juraj
  surname: Ciberlin
  fullname: Ciberlin, Juraj
  organization: RT-RK Institute for Computer Based Systems Cara Hadrijana 10b, Osijek, Croatia
– sequence: 2
  givenname: Ratko
  surname: Grbic
  fullname: Grbic, Ratko
  organization: Faculty of Electrical Engineering, Computer Science and Information Technology Kneza Trpimira 2b, Osijek, Croatia
– sequence: 3
  givenname: Nikola
  surname: Teslic
  fullname: Teslic, Nikola
  organization: RT-RK Institute for Computer Based Systems Narodnog Fronta 23a, Novi Sad, Serbia
– sequence: 4
  givenname: Milos
  surname: Pilipovic
  fullname: Pilipovic, Milos
  organization: RT-RK Institute for Computer Based Systems Narodnog Fronta 23a, Novi Sad, Serbia
BookMark eNotj8tKAzEYRiPYhdY-gLjJC8yYS6d_spTBS6HYTd10U3L5Y6NtImms-PZWpqsD34ED3zW5TDkhIbectZwzfb-ev_atYFy3CmZazuCCTDQoDkJxoRmXV2S1tB_oKvVYT4g5UZM8zcNYi3GfMb3TmGgoOVWaA61bpEfcRrdD-n34t4M6RvyhzuyxmBsyCmZ3wMmZY_L29LjqX5rF8nnePyyayKGrjZNG2iCYY4AarDZSOxSgPHaCQwA1tcGiM0LLwKSyNgB4r3FqPAQJnRyTu6EbEXHzVeLelN_N-av8A_M2TvA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ZINC.2019.8769367
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728129013
172812901X
EndPage 32
ExternalDocumentID 8769367
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-c3a3bf20c07e97b9a39ce278de5217f784bfbeca293f038bbf77dd9e4ad7f3753
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493114500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:19 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c3a3bf20c07e97b9a39ce278de5217f784bfbeca293f038bbf77dd9e4ad7f3753
PageCount 6
ParticipantIDs ieee_primary_8769367
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle 2019 Zooming Innovation in Consumer Technologies Conference (ZINC)
PublicationTitleAbbrev ZINC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7842928
Snippet Modern vehicles are equipped with the different systems that help driver in the driving process ensuring safer and more comfortable driving. These systems are...
SourceID ieee
SourceType Publisher
StartPage 27
SubjectTerms advanced driver assistance systems
Autonomous vehicles
Classification algorithms
Detectors
Machine learning algorithms
Object detection
Object tracking
Viola-Jones algorithm
Title Object detection and object tracking in front of the vehicle using front view camera
URI https://ieeexplore.ieee.org/document/8769367
WOSCitedRecordID wos000493114500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMToBbxLQ-MhKaxie0ZUTGVDkWqWCp_nCFLgkLa348viYqQWNgsO1KkO0t37-6dH8CtfrAqZI4nIkSIIkwqEhXULPExNwjexQQh78Qm5GKh1mu9HMDdfhYGEVvyGd7Tsu3l-8ptqVQ2VSTcl8shDKXMu1mtvlE5S_X0LcJg4mpF53ff_RJMaePF_Oh_fzqGyc_gHVvuQ8oJDLAcw-rFUrGEeWxa3lTJIvpnVbfZ1MZRtZsVJQv0GAGrAotJHdvhB10JRsT29_6I2gDMGapDTeB1_rR6fE56MYSkiBG-SRw33IYsdalELa02XDvMpPIYA7CMhhY2RH-YGL5DypW1QUrvNQrjZeARlJzCqKxKPAMmbKbQkc4ID0I5a3LMFSdgIjLpMT2HMVlk89m9d7HpjXHx9_YlHJLROxLgFYyaeovXcOB2TfFV37RO-gb2ApaI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf5uDRtdtN3GTPYqlYaw8VipeSj4n2sit1299vZnepCF68hWRhYSYw82be5AFcZ3dG-cTySPgAUYSORaS86kcu5Abe2ZAgpLXYhByP1WyWTVpws5mFQcSKfIa3tKx6-a6wKyqV9RQJ96VyC7ZJOauZ1mpalf04670FIExsreD--stfkilVxBjs_-9fB9D9Gb1jk01QOYQW5h2YvhgqlzCHZcWcylnA_6yoN8ultlTvZouceXqOgBWehbSOrfGDLgUjavt7c0SNAGY1VaK68Dp4mN4Po0YOIVqEGF9GlmtufBLbWGImTaZ5ZjGRymEIwTKYWhgfPKJDAPcxV8Z4KZ3LUGgnPQ-w5AjaeZHjMTBhEoWWlEa4F8oanWKqOEETkUiH8Ql0yCLzz_rFi3ljjNO_t69gdzh9Hs1Hj-OnM9gjB9SUwHNol8sVXsCOXZeLr-Vl5bBv-sCZ0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+Zooming+Innovation+in+Consumer+Technologies+Conference+%28ZINC%29&rft.atitle=Object+detection+and+object+tracking+in+front+of+the+vehicle+using+front+view+camera&rft.au=Ciberlin%2C+Juraj&rft.au=Grbic%2C+Ratko&rft.au=Teslic%2C+Nikola&rft.au=Pilipovic%2C+Milos&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=27&rft.epage=32&rft_id=info:doi/10.1109%2FZINC.2019.8769367&rft.externalDocID=8769367