Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery
This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entr...
Uloženo v:
| Vydáno v: | 2018 26th European Signal Processing Conference (EUSIPCO) s. 1965 - 1969 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
EURASIP
01.09.2018
|
| Témata: | |
| ISSN: | 2076-1465 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms. |
|---|---|
| ISSN: | 2076-1465 |
| DOI: | 10.23919/EUSIPCO.2018.8553389 |