Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery
This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entr...
Gespeichert in:
| Veröffentlicht in: | 2018 26th European Signal Processing Conference (EUSIPCO) S. 1965 - 1969 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
EURASIP
01.09.2018
|
| Schlagworte: | |
| ISSN: | 2076-1465 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms. |
|---|---|
| ISSN: | 2076-1465 |
| DOI: | 10.23919/EUSIPCO.2018.8553389 |