Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery

This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 26th European Signal Processing Conference (EUSIPCO) s. 1965 - 1969
Hlavní autori: Jiang, Qianru, de Lamare, Rodrigo C., Zakharov, Yuriy, Li, Sheng, He, Xiongxiong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: EURASIP 01.09.2018
Predmet:
ISSN:2076-1465
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms.
AbstractList This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms.
Author He, Xiongxiong
de Lamare, Rodrigo C.
Jiang, Qianru
Li, Sheng
Zakharov, Yuriy
Author_xml – sequence: 1
  givenname: Qianru
  surname: Jiang
  fullname: Jiang, Qianru
  organization: College of Information Engineering, Zhejiang University of Technology, Zhejiang, People's Republic of China
– sequence: 2
  givenname: Rodrigo C.
  surname: de Lamare
  fullname: de Lamare, Rodrigo C.
  organization: Department of Electronic Engineering, University of York, York, YO10 5DD, U.K
– sequence: 3
  givenname: Yuriy
  surname: Zakharov
  fullname: Zakharov, Yuriy
  organization: Department of Electronic Engineering, University of York, York, YO10 5DD, U.K
– sequence: 4
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  organization: College of Information Engineering, Zhejiang University of Technology, Zhejiang, People's Republic of China
– sequence: 5
  givenname: Xiongxiong
  surname: He
  fullname: He, Xiongxiong
  organization: College of Information Engineering, Zhejiang University of Technology, Zhejiang, People's Republic of China
BookMark eNotkM1OAjEYAKvRRECewJj0BRbbr9u_IyEIG4kYgTMp24-lZtmS7gaDT6-JnGZOc5g-uWtig4Q8czYCYbl9mW5WxcdkOQLGzchIKYSxN6RvmQFtNeP8lvSAaZXxXMkHMmzbL8YYKCN0Dj2yeWvid42-wmwcPHr6HtPR1eHnT4sOk-vCGencJU_Xh4TtIdY-NBUd11VMoTscW7qPia5OLrVIP7GMZ0yXR3K_d3WLwysHZPM6XU_m2WI5KybjRRa4ll1WCvCQK8x3IMAgeAnoPTjHJSrjrHTa5Ib5vDSqLMWOMamM5bp0oDx4Lwbk6b8bEHF7SuHo0mV7vSB-AcpJVGk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO.2018.8553389
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9082797011
9789082797015
EISSN 2076-1465
EndPage 1969
ExternalDocumentID 8553389
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c32d246e4b2328e2d52edd2aa15e68a95a78480d4c86cc3b00568917ca26d2dd3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455614900395&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c32d246e4b2328e2d52edd2aa15e68a95a78480d4c86cc3b00568917ca26d2dd3
PageCount 5
ParticipantIDs ieee_primary_8553389
PublicationCentury 2000
PublicationDate 2018-Sept.
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationTitle 2018 26th European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2018
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssj0002683742
ssib028087106
ssib025355106
Score 1.7172908
Snippet This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a...
SourceID ieee
SourceType Publisher
StartPage 1965
SubjectTerms Compressed sensing
Europe
Iterative algorithms
iterative hard thresholding
Matching pursuit algorithms
prior information
probability estimation
Signal processing
Signal processing algorithms
Simulation
sparse recovery
Title Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery
URI https://ieeexplore.ieee.org/document/8553389
WOSCitedRecordID wos000455614900395&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA8qO2yXfejYNznsuGqbNunLUUSZDJyggjfJkudWcCpaB9tfv6StzsEuuyU5lJKXvPf75X0Rch8HqC2MttpvGoAXMSU9BTL2hEIJGoCDyZtNxL0ejMeyXyIPu1wYRMyCz7Duhpkv3yz0xj2VNYBbcAKyTMpxLPJcre3ZYdwazj2PIQPfUoFi7rQyE5aKRSxP4mGhDGSjPRp0-61nF98F9eLbv5qsZDamc_y_vzshtZ9kPdrfmaFTUsL5GTnaqzNYJaOn7cuZ10wMGtpzSHWWfNlhNyurbHUedU58OrSyXRcuKdqcvS5WSfr2vqYW29LB0rJgpI6x2gvwWSOjTnvYevSKfgpeYkFC6umQGRYJjF4sjAJkhjM0hikVcBSgJFcxROCbSIPQOnQXVIClc1oxYZgx4TmpzBdzvCDUoBJT7qNWQkVKKjDSF9MQDOca0DeXpOo2aLLMS2ZMir25-nv5mhw6GeShWzekkq42eEsO9EearFd3mZy_AVtnp2U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurFN77NwaOr22ySnRxLUSzqWrAFbyUmU13QVvoQ9Neb7K4v8OItyWFZMsnM92VeAEdpnayH0V779esYCW50ZFCnkTKk0SJKdGWziTTL8O5Ot2fg-CsXhoiK4DM6CcPCl--Gdhqeyk5RenCCehbmpBA8LrO1Pk8Pl950_vAZcow9GajmQS9z5cmY4GUaD090XZ-edW9b7eZNiPDCk-rrv9qsFFbmfPl__7cCG9_peqz9ZYhWYYYGa7D0o9LgOnQvP9_OokbuyLEsYNWn_N0PW0VhZa_1WHDjs46X7rhySrHG08NwlE8en8fMo1t2--J5MLHAWf0VeNuA7vlZp3kRVR0VotzDhElkE-64UCTuPZBC4k5yco4bU5ek0GhpUhQYO2FRWZuEK6rQEzpruHLcuWQTaoPhgLaAOTKqL2OyRhlhtEGnY9VP0ElpkWK3Dethg3ovZdGMXrU3O38vH8LCRef6qnfVyi53YTHIowzk2oPaZDSlfZi3r5N8PDooZP4BPySqrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+26th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Knowledge-Aided+Normalized+Iterative+Hard+Thresholding+Algorithms+for+Sparse+Recovery&rft.au=Jiang%2C+Qianru&rft.au=de+Lamare%2C+Rodrigo+C.&rft.au=Zakharov%2C+Yuriy&rft.au=Li%2C+Sheng&rft.date=2018-09-01&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1965&rft.epage=1969&rft_id=info:doi/10.23919%2FEUSIPCO.2018.8553389&rft.externalDocID=8553389