SQLoop: High Performance Iterative Processing in Data Management

Increasingly more iterative and recursive query tasks are processed in data management systems, such as graph-structured data analytics, demanding fast response time. However, existing CTE-based recursive SQL and its implementation ineffectively respond to this intensive query processing with two ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS) s. 1039 - 1051
Hlavní autoři: Floratos, Sofoklis, Zhang, Yanfeng, Yuan, Yuan, Lee, Rubao, Zhang, Xiaodong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2018
Témata:
ISSN:2575-8411
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Increasingly more iterative and recursive query tasks are processed in data management systems, such as graph-structured data analytics, demanding fast response time. However, existing CTE-based recursive SQL and its implementation ineffectively respond to this intensive query processing with two major drawbacks. First, its iteration execution model is based on implicit set-oriented terminating conditions that cannot express aggregation-based tasks, such as PageRank. Second, its synchronous execution model cannot perform asynchronous computing to further accelerate execution in parallel. To address these two issues, we have designed and implemented SQLoop, a framework that extends the semantics of current SQL standard in order to accommodate iterative SQL queries. SQLoop interfaces between users and different database engines with two powerful components. First, it provides an uniform SQL expression for users to access any database engine so that they do not need to write database dependent SQL or move datasets from a target engine to process in their own sites. Second, SQLoop automatically parallelizes iterative queries that contain certain aggregate functions in both synchronous and asynchronous ways. More specifically, SQLoop is able to take advantage of intermediate results generated between different iterations and to prioritize the execution of partitions that accelerate the query processing. We have tested and evaluated SQLoop by using three popular database engines with real-world datasets and queries, and shown its effectiveness and high performance.
AbstractList Increasingly more iterative and recursive query tasks are processed in data management systems, such as graph-structured data analytics, demanding fast response time. However, existing CTE-based recursive SQL and its implementation ineffectively respond to this intensive query processing with two major drawbacks. First, its iteration execution model is based on implicit set-oriented terminating conditions that cannot express aggregation-based tasks, such as PageRank. Second, its synchronous execution model cannot perform asynchronous computing to further accelerate execution in parallel. To address these two issues, we have designed and implemented SQLoop, a framework that extends the semantics of current SQL standard in order to accommodate iterative SQL queries. SQLoop interfaces between users and different database engines with two powerful components. First, it provides an uniform SQL expression for users to access any database engine so that they do not need to write database dependent SQL or move datasets from a target engine to process in their own sites. Second, SQLoop automatically parallelizes iterative queries that contain certain aggregate functions in both synchronous and asynchronous ways. More specifically, SQLoop is able to take advantage of intermediate results generated between different iterations and to prioritize the execution of partitions that accelerate the query processing. We have tested and evaluated SQLoop by using three popular database engines with real-world datasets and queries, and shown its effectiveness and high performance.
Author Floratos, Sofoklis
Zhang, Xiaodong
Zhang, Yanfeng
Yuan, Yuan
Lee, Rubao
Author_xml – sequence: 1
  givenname: Sofoklis
  surname: Floratos
  fullname: Floratos, Sofoklis
– sequence: 2
  givenname: Yanfeng
  surname: Zhang
  fullname: Zhang, Yanfeng
– sequence: 3
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
– sequence: 4
  givenname: Rubao
  surname: Lee
  fullname: Lee, Rubao
– sequence: 5
  givenname: Xiaodong
  surname: Zhang
  fullname: Zhang, Xiaodong
BookMark eNotz09LwzAYgPEoCm5zd8FLvkDnm_-pJ6VTV6g42e4jad_WiE1HWoR9ewU9PbcfPHNyEYeIhNwwWDEG-V1ZrIvdigOzKwAG8ozMmRJWa2uYPSczrozKrGTsiizH8RMAuLYSjJqRh917NQzHe7oJ3QfdYmqH1LtYIy0nTG4K30i3aahxHEPsaIh07SZHX110HfYYp2ty2bqvEZf_XZD989O-2GTV20tZPFZZYEZNWS04eI2N86rlvjZcqtw0reLau9xZUA49WKFlyzTUsvGW87zxkqFt6rwVC3L7xwZEPBxT6F06HX6ftNBG_ADjB0q0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDCS.2018.00104
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538668718
9781538668719
EISSN 2575-8411
EndPage 1051
ExternalDocumentID 8416367
Genre orig-research
GroupedDBID 23M
29G
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-c320b6edab5f2bc724597df526ba9a805aeb08364f160c4db8229db41e8dc9f3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541051900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:48:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c320b6edab5f2bc724597df526ba9a805aeb08364f160c4db8229db41e8dc9f3
PageCount 13
ParticipantIDs ieee_primary_8416367
PublicationCentury 2000
PublicationDate 2018-Jul
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-Jul
PublicationDecade 2010
PublicationTitle 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)
PublicationTitleAbbrev ICDSC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684075
ssj0005863
Score 2.098524
Snippet Increasingly more iterative and recursive query tasks are processed in data management systems, such as graph-structured data analytics, demanding fast...
SourceID ieee
SourceType Publisher
StartPage 1039
SubjectTerms Acceleration
Asynchronous Computation
Engines
Iterative
Parallel Query Execution
Query processing
SQL
Structured Query Language
Task analysis
Title SQLoop: High Performance Iterative Processing in Data Management
URI https://ieeexplore.ieee.org/document/8416367
WOSCitedRecordID wos000541051900094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05b8IwFH4C1KETbaHqLQ8dm2InPuJOlaCoSBWigoEN-ZRYEgShv79xCMfQpZvlwbKeZT89v-8AeGZKEqMIK2-aTiOqpI60SnlkhdIaS2-ot5XZhBiP0_lcThrwcuDCOOcq8Jl7DcOql29zsw1fZb3QIku4aEJTCL7jah3-UyrVkhPBXZbyZN-WxLI36g_604DkCtBJEmzZTsxUqlwybP9vFxfQPZLy0OSQbi6h4bIraO9dGVB9STvwPv3-yvPVGwoQDjQ5EgPQqFJQLp83VNMDynXQMkMDVSh0xMF0YTb8mPU_o9onIVqWyb-ITBJjzZ1VmvlYGxHTskqwnsVcK6lSzJTTQYSaesKxoVYHkXerKXGpNdIn19DK8szdAEq8MakWmHhLqKFcc2K5kdyXdQtWjNxCJ8RjsdopYSzqUNz9PX0P5yHgO3DrA7SK9dY9wpn5KZab9VN1fL9zgJtO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_DoarvbdreeTEACEQkGDtxInwmXXYKLv9_tsjwOXrw1PTTNNO1kOt8D4JFJQbQkrLhpKgmoFCpQMuGBiaVSWDhNnSnNJuLhMJlOxagGT1sujLW2BJ_ZZz8se_km0yv_VfbiW2QRjw_gkFEa4jVba_ujUuqW7EnusoRHm8YkFi_9dqc99lguD54k3phtz06lzCbdxv_2cQqtHS0PjbYJ5wxqNj2HxsaXAVXXtAlv469Bli1ekQdxoNGOGoD6pYZy8cChiiBQrIPmKerIXKIdEqYFk-77pN0LKqeEYF6k_zzQUYgVt0Yq5kKl45AWdYJxLORKCplgJq3yMtTUEY41NcrLvBtFiU2MFi66gHqapfYSUOS0TlSMiTOEasoVJ4ZrwV1RuWDJyBU0fTxmi7UWxqwKxfXf0w9w3Jt8DmaD_vDjBk588NdQ11uo58uVvYMj_ZPPv5f35VH-ArmHnpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+38th+International+Conference+on+Distributed+Computing+Systems+%28ICDCS%29&rft.atitle=SQLoop%3A+High+Performance+Iterative+Processing+in+Data+Management&rft.au=Floratos%2C+Sofoklis&rft.au=Zhang%2C+Yanfeng&rft.au=Yuan%2C+Yuan&rft.au=Lee%2C+Rubao&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=1039&rft.epage=1051&rft_id=info:doi/10.1109%2FICDCS.2018.00104&rft.externalDocID=8416367