Extensions of recurrent neural network language model

We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform many competitive language modeling techniques in terms of accuracy, the remaining problem is the computational complexity. In this work, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 5528 - 5531
Hlavní autoři: Mikolov, Tomas, Kombrink, Stefan, Burget, Lukas, Cernocky, Jan Honza, Khudanpur, Sanjeev
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2011
Témata:
ISBN:9781457705380, 1457705389
ISSN:1520-6149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform many competitive language modeling techniques in terms of accuracy, the remaining problem is the computational complexity. In this work, we show approaches that lead to more than 15 times speedup for both training and testing phases. Next, we show importance of using a backpropagation through time algorithm. An empirical comparison with feedforward networks is also provided. In the end, we discuss possibilities how to reduce the amount of parameters in the model. The resulting RNN model can thus be smaller, faster both during training and testing, and more accurate than the basic one.
ISBN:9781457705380
1457705389
ISSN:1520-6149
DOI:10.1109/ICASSP.2011.5947611