A nonparametric denoising approach for thevenin equivalent parameters estimation based on taut-string-multiresolution algorithm

In this paper, a new nonparametric Thevenin equivalent parameters (TEPs) estimation method is proposed by using local measurements. It is achieved by considering the TEPs estimation issue as a classical optimized denoising problem. The noise characteristics are analyzed through stochastic simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Power & Energy Society General Meeting S. 1 - 5
Hauptverfasser: Shaofei Shen, Huifang Wang, Peijun Hu, Benteng He, Yilu Liu, Chun Gan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:1944-9933
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new nonparametric Thevenin equivalent parameters (TEPs) estimation method is proposed by using local measurements. It is achieved by considering the TEPs estimation issue as a classical optimized denoising problem. The noise characteristics are analyzed through stochastic simulation experiments. Then, a nonparametric regression algorithm named taut-string-multiresolution is employed to obtain the optimized TEPs estimation results. Compared with the classic Total Variation (TV) based denoising model, the proposed estimation method has relatively stable performance in different operation conditions, without the need for predetermination of any parameters. The effectiveness of the proposed TEPs estimation method is verified by an ideal two-bus equivalent system under two different operation scenarios.
ISSN:1944-9933
DOI:10.1109/PESGM.2017.8274376