Hybrid Binary Bat Algorithm with Cross-Entropy Method for Feature Selection

Feature selection aims to find an optimal subset from a given set of features. As this task can be seen as a challenging combinatorial optimization problem while the classical optimization techniques have some limitations in solving it. In this paper we propose a novel hybrid metaheuristic, improved...

Full description

Saved in:
Bibliographic Details
Published in:2019 4th International Conference on Control and Robotics Engineering (ICCRE) pp. 165 - 169
Main Authors: Li, Guocheng, Le, Chengyi
Format: Conference Proceeding
Language:English
Published: IEEE 01.04.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection aims to find an optimal subset from a given set of features. As this task can be seen as a challenging combinatorial optimization problem while the classical optimization techniques have some limitations in solving it. In this paper we propose a novel hybrid metaheuristic, improved Binary Bat Algorithm with Cross-Entropy method (BBACE), for feature selection. In the proposed BBACE algorithm, the Cross-Entropy method is embedded in Bat Algorithm to make good balance between exploitation and exploration based on co-evolution. The performance of the proposed method is evaluated on 10 standard benchmark datasets from UCI repository and compared with some well-known wrapper feature selection techniques such as GA, PSO, and ALO. The experimental results demonstrate the efficiency of the proposed approach in selecting the most informative attributes for classification and improving the classification accuracy.
AbstractList Feature selection aims to find an optimal subset from a given set of features. As this task can be seen as a challenging combinatorial optimization problem while the classical optimization techniques have some limitations in solving it. In this paper we propose a novel hybrid metaheuristic, improved Binary Bat Algorithm with Cross-Entropy method (BBACE), for feature selection. In the proposed BBACE algorithm, the Cross-Entropy method is embedded in Bat Algorithm to make good balance between exploitation and exploration based on co-evolution. The performance of the proposed method is evaluated on 10 standard benchmark datasets from UCI repository and compared with some well-known wrapper feature selection techniques such as GA, PSO, and ALO. The experimental results demonstrate the efficiency of the proposed approach in selecting the most informative attributes for classification and improving the classification accuracy.
Author Li, Guocheng
Le, Chengyi
Author_xml – sequence: 1
  givenname: Guocheng
  surname: Li
  fullname: Li, Guocheng
  organization: School of Finance & Mathematics, West Anhui University, Lu'an, China
– sequence: 2
  givenname: Chengyi
  surname: Le
  fullname: Le, Chengyi
  organization: School of Economic & Managment, East China Jiaotong University, Nanchang, China
BookMark eNotj0FOwzAURI0ECyi9AGx8gQT_2IntZRultKIICbqv7OSbWkrjyjFCuT2R6GZm8zR680BuhzAgIU_AcgCmX3Z1_dnkBQOdK1mIQrIbstRSgSwUQKk53JO37WSj7-jaDyZOdG0SXfXfIfp0OtPfOWkdwzhmzZBiuEz0HdMpdNSFSDdo0k9E-oU9tsmH4ZHcOdOPuLz2ghw2zaHeZvuP11292mceZJkyIyqrjEKrGWuFtZUSzHItRIVOuap13FlmJQfUoLqi4-WMt4xJB046yRfk-X_WI-LxEv15Nj9eH_I_YjRKsA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCRE.2019.8724270
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9781728115931
1728115930
EndPage 169
ExternalDocumentID 8724270
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-a46b8a8eb900c4bb6840b39446ef8f6cf3fb0b731e918d2d35b8ac007f1f7f73
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493388600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:11 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a46b8a8eb900c4bb6840b39446ef8f6cf3fb0b731e918d2d35b8ac007f1f7f73
PageCount 5
ParticipantIDs ieee_primary_8724270
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle 2019 4th International Conference on Control and Robotics Engineering (ICCRE)
PublicationTitleAbbrev ICCRE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.735132
Snippet Feature selection aims to find an optimal subset from a given set of features. As this task can be seen as a challenging combinatorial optimization problem...
SourceID ieee
SourceType Publisher
StartPage 165
SubjectTerms bat algorithm
Classification algorithms
co-evolution
cross-entropy method
Entropy
Feature extraction
feature selection
Genetic algorithms
hybrid optimization
Optimization
Sociology
Statistics
Title Hybrid Binary Bat Algorithm with Cross-Entropy Method for Feature Selection
URI https://ieeexplore.ieee.org/document/8724270
WOSCitedRecordID wos000493388600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSkMxEB1qcdGVj1Z8k4VLY-8zj6W9tChqKVqku5LkJipoW0or9O_N5NaK4MZdCAOBM4QzycyZAbiIdKQSlWuaMJnQzHBFpZU5VY5lVkge25A9f77n_b4YjeSgBpcbLYy1NhSf2Stchlx-OTVL_CprC-4JhfsH-hbnrNJqfetgItm-LYrHLhZree9Xhr8mpgTC6O3876hdaP0o78hgwyl7ULOTfWhgRFg1VG7C3c0KRVakE4S0pKMW5Pr9Zerf-K8fBH9VSYHER7tYgj5bkYcwIpr42JRguLecW_IUZt94h7Rg2OsOixu6nohA3zzNL6jKmBZKWC2jyGRaY6cWjdJWZp1wzLjU6Ujz1CMcizIp09ybGx8GuNhxx9MDqE-mE3sIxN9l7VRusF1gFnOtUm1YXKZc5tyViTyCJoIynlU9L8ZrPI7_3j6BBuJeVbScQn0xX9oz2DafHpz5eXDUF2vrlp8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB7EFuqpDy19N4cem7qP7CY51kVRfCCtFG-SZJNaaFVEC_77JllrKfTSWwgDgRnCN69vBuAukIGIRCJxlPIIE0UF5ponWJiUaMZpqH31_KVHBwM2HvNhCe53XBittW8-0w_u6Gv5-VytXaqszqgFFGoD9L2EkCgo2FrfTJiA1ztZ9tR07VrW_oXor50pHjJah_977AhqP9w7NNyhyjGU9OwEKs4nLEYqV6Hb3jiaFWp4Ki1qiBV6fH-d2yh_-oFcXhVlDvpw0zWhLzao75dEI-udIufwrZcaPfvtN9YkNRi1mqOsjbc7EfCbBfoVFiSVTDAteRAoIqWb1SIduTXVhplUmdjIQNLY6jhkeZTHiRVX1hEwoaGGxqdQns1n-gyQ_c3SiES5gYEkpFLEUqVhHlOeUJNH_ByqTimTRTH1YrLVx8Xf17dw0B71e5NeZ9C9hIqzQdHfcgXl1XKtr2FffVpFLW-80b4AcAaZ5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+4th+International+Conference+on+Control+and+Robotics+Engineering+%28ICCRE%29&rft.atitle=Hybrid+Binary+Bat+Algorithm+with+Cross-Entropy+Method+for+Feature+Selection&rft.au=Li%2C+Guocheng&rft.au=Le%2C+Chengyi&rft.date=2019-04-01&rft.pub=IEEE&rft.spage=165&rft.epage=169&rft_id=info:doi/10.1109%2FICCRE.2019.8724270&rft.externalDocID=8724270