Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images

We address the problem of inferring the pose of an RGB-D camera relative to a known 3D scene, given only a single acquired image. Our approach employs a regression forest that is capable of inferring an estimate of each pixel's correspondence to 3D points in the scene's world coordinate fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2013 IEEE Conference on Computer Vision and Pattern Recognition S. 2930 - 2937
Hauptverfasser: Shotton, Jamie, Glocker, Ben, Zach, Christopher, Izadi, Shahram, Criminisi, Antonio, Fitzgibbon, Andrew
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2013
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of inferring the pose of an RGB-D camera relative to a known 3D scene, given only a single acquired image. Our approach employs a regression forest that is capable of inferring an estimate of each pixel's correspondence to 3D points in the scene's world coordinate frame. The forest uses only simple depth and RGB pixel comparison features, and does not require the computation of feature descriptors. The forest is trained to be capable of predicting correspondences at any pixel, so no interest point detectors are required. The camera pose is inferred using a robust optimization scheme. This starts with an initial set of hypothesized camera poses, constructed by applying the forest at a small fraction of image pixels. Preemptive RANSAC then iterates sampling more pixels at which to evaluate the forest, counting inliers, and refining the hypothesized poses. We evaluate on several varied scenes captured with an RGB-D camera and observe that the proposed technique achieves highly accurate relocalization and substantially out-performs two state of the art baselines.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2013.377