A novel dynamic particle swarm optimization algorithm based on improved artificial immune network

To resolve the problem of the premature and low precision of the common particles swarm optimization (CPSO), the paper presents a novel dynamic particle swarm optimization algorithm based on improved artificial immune network (IAINPSO). Based on the variance of the population's fitness, a kind...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS s. 103 - 106
Hlavní autori: Hongzhong Tang, Yewei Xiao, Huixian Huang, Xuefeng Guo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2010
Predmet:
ISBN:9781424458974, 1424458978
ISSN:2164-5221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To resolve the problem of the premature and low precision of the common particles swarm optimization (CPSO), the paper presents a novel dynamic particle swarm optimization algorithm based on improved artificial immune network (IAINPSO). Based on the variance of the population's fitness, a kind of convergence factor is adopted in order to adjust the ability of search. It is an effective way to combine with linear decreasing inertia weight. To enhance the performance of the local search ability and the search precision of the new algorithm, the improved artificial immune network is introduced in this paper. The experimental results show that the new algorithm has not only satisfied convergence precision, but also the number of iterations is much less than traditional scheme, and has much faster convergent speed, with excellent performance of in the search of optimal solution to multidimensional function.
ISBN:9781424458974
1424458978
ISSN:2164-5221
DOI:10.1109/ICOSP.2010.5655387