High performance compressive sensing reconstruction hardware with QRD process

This paper presents a high performance architecture for the reconstruction of compressive sampled signals using Orthogonal Matching Pursuit (OMP) algorithm. Q-R decomposition (QRD) process is used for the matrix inverse core and a new algorithm for finding fast inverse square root of a fixed point n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 IEEE International Symposium on Circuits and Systems (ISCAS) s. 29 - 32
Hlavní autori: Stanislaus, J. L. V. M., Mohsenin, T.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2012
Predmet:
ISBN:9781467302180, 146730218X
ISSN:0271-4302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a high performance architecture for the reconstruction of compressive sampled signals using Orthogonal Matching Pursuit (OMP) algorithm. Q-R decomposition (QRD) process is used for the matrix inverse core and a new algorithm for finding fast inverse square root of a fixed point number is also implemented to support the QRD process. The optimized architecture takes 256-length input vector and 64 measurement data, and reconstructs a signal of sparsity 8. The design is implemented in 65 nm CMOS which runs at 165 MHz and occupies 0.69 mm 2 , total reconstruction takes 13.7 μs. The implementation on Xilinx FPGA Virtex-5 takes 27.12 μs to reconstruct a 256-length signal of sparsity 8. The same architecture for 128-length signal of sparsity 5 on Virtex-5 is 2.4 times faster than the state-of-the-art implementation.
ISBN:9781467302180
146730218X
ISSN:0271-4302
DOI:10.1109/ISCAS.2012.6271921