Adaptive Iterative Learning Control Mechanism for Nonlinear Systems subject to High-Order Internal Model

This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial sh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS) s. 599 - 604
Hlavní autoři: Zhou, Wei, Yu, Miao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial shift problem in iteration domain. Furthermore, the AILC technique is extended to systems with several parameters in discussion. A simulation example confirms the validity of the proposed method.
DOI:10.1109/DDCLS.2018.8515997