Adaptive Iterative Learning Control Mechanism for Nonlinear Systems subject to High-Order Internal Model
This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial sh...
Uložené v:
| Vydané v: | 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS) s. 599 - 604 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2018
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial shift problem in iteration domain. Furthermore, the AILC technique is extended to systems with several parameters in discussion. A simulation example confirms the validity of the proposed method. |
|---|---|
| DOI: | 10.1109/DDCLS.2018.8515997 |