Adaptive Iterative Learning Control Mechanism for Nonlinear Systems subject to High-Order Internal Model

This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial sh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS) s. 599 - 604
Hlavní autori: Zhou, Wei, Yu, Miao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2018
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial shift problem in iteration domain. Furthermore, the AILC technique is extended to systems with several parameters in discussion. A simulation example confirms the validity of the proposed method.
DOI:10.1109/DDCLS.2018.8515997