Fusing Text and Frienships for Location Inference in Online Social Networks

Location information is becoming prevalent in today's online social networks (OSNs), which raises special privacy concerns with regard to both location sharing and its applications. Even when no explicit location is disclosed by a user, it is possible to geolocate the user through his/her socia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Jg. 1; S. 158 - 165
Hauptverfasser: Gu, Hansu, Hang, Haojie, Lv, Qin, Grunwald, Dirk
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2012
Schlagworte:
ISBN:9781467360579, 1467360570
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Location information is becoming prevalent in today's online social networks (OSNs), which raises special privacy concerns with regard to both location sharing and its applications. Even when no explicit location is disclosed by a user, it is possible to geolocate the user through his/her social context, e.g., status updates and social relationships in OSNs. To demonstrate this, we propose GeoFind, which accurately identifies users' geographic regions through effective fusion (re-ranking) of (1) text-based ranking using geo-sensitive textual features and (2) structure-based ranking using maximum likelihood estimation (MLE) of geotagged friends. Evaluation results using 0.8 million geotagged Twitter users over a 3-month period demonstrate that GeoFind outperforms state-of-the-art techniques, with significant reduction of estimation error (25% of average error, 66% of median error). The potential of improving location accuracy through the fusion of multiple data types calls for a re-examination of existing privacy protection policies and mechanisms.
ISBN:9781467360579
1467360570
DOI:10.1109/WI-IAT.2012.243