MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration

Image prior information is a determinative factor to tackle with the ill-posed problem. In this paper, we present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes f...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE International Conference on Image Processing (ICIP) pp. 2104 - 2108
Main Authors: Lu, Hongyang, Li, Sanqian, Liu, Qiegen, Wang, Yuhao
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2017
Subjects:
ISSN:2381-8549
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image prior information is a determinative factor to tackle with the ill-posed problem. In this paper, we present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with filters to formulate multi-features images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications.
AbstractList Image prior information is a determinative factor to tackle with the ill-posed problem. In this paper, we present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with filters to formulate multi-features images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications.
Author Liu, Qiegen
Wang, Yuhao
Lu, Hongyang
Li, Sanqian
Author_xml – sequence: 1
  givenname: Hongyang
  surname: Lu
  fullname: Lu, Hongyang
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 2
  givenname: Sanqian
  surname: Li
  fullname: Li, Sanqian
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 3
  givenname: Qiegen
  surname: Liu
  fullname: Liu, Qiegen
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 4
  givenname: Yuhao
  surname: Wang
  fullname: Wang, Yuhao
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
BookMark eNotj9FKwzAYhaMouM09gHiTF0j90zRp450Up5UOReb1SJM_JVpbSTtkb2_BXZ1zcfj4zpJc9EOPhNxwSDgHfVeV1VuSAs-TItVKSXFG1jovuAQNKc9lcU4WqSg4K2Smr8hyHD8B5r3gC_Ky3bD6fVfe0-2hmwLzoZswjrQ9BIeOdsMvi6b_ohP24xCpHVzoW-rnGr5NizTiOA3RTGHor8mlN92I61OuyMfmcVc-s_r1qSofahZml4nlpgFdaAMgdCOcFI2DRlmpEKwyHrIUlMMskza1WoPwWjpu0TsOyDPlxYrc_nMDIu5_4iwSj_vTdfEHr9BOcg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296653
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 2108
ExternalDocumentID 8296653
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-7ab0989a0039b3d53bd0b6c56e0c6af04206de445c2c9903f95d1cefd10e146f3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428410702046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7ab0989a0039b3d53bd0b6c56e0c6af04206de445c2c9903f95d1cefd10e146f3
PageCount 5
ParticipantIDs ieee_primary_8296653
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.0146618
Snippet Image prior information is a determinative factor to tackle with the ill-posed problem. In this paper, we present a multi-filters guided low-rank tensor coding...
SourceID ieee
SourceType Publisher
StartPage 2104
SubjectTerms HOSVD decomposition
Image restoration
Indexes
Low-rank tensor coding
Multi-filters
Title MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration
URI https://ieeexplore.ieee.org/document/8296653
WOSCitedRecordID wos000428410702046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sFT1Vb8JgePps02m-yu12KxoqVIhd5KPmZlQbuybfXvm6RLRfDibVl2Q5hhMi-ZeXkA1xhpo9PYUoFS09jGgmZCCJrLyKpMWMZTFcQmkskknc-zaQNudlwYRAzNZ9jzj6GWb0uz8Udl_XTgwLngTWgmidxytXbnKQ5GOCjCdpstf49MXcWMWNYfD8dT38iV9OpBfqmphGQyav9vGgfQ_WHlkeku3xxCA5dH0K5hJKmDdNWBh6cRfXyeDW9JYNfSvPAV8RV53RTWffhWflGv1E5873pZEVP64YgDr6R4d6sLqYLYTPBYF15Gd7PhPa0lE2jhcMCaJkqzLM2Up9xqbgXXlmlphERmpMpdhDJpMY6FGRiXh3ju3BEZzG3E0K2ZOT-G1rJc4gmQmBslrftZmtwFtlXWudsqRKZFwmNzCh1vmsXH9laMRW2Vs79fn8O-t_62O-sCWutqg5ewZz7Xxaq6Cq78BlNnn6s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKejT1E38Ng8-mi1dPtr6OhybbmPIhL2NNEmloKt0m_59k6xUBF98K6UNJYebe5p7Tw7ArQkSlURMY25EgplmHMecc5yKQMuYa0Ij6c0mwskkms_jaQ3uKi2MMcY3n5m2u_S1fJ2rjdsq60RdS8453YFdzliXbNVa1Y6KJRKWjJDqd8udJFPWMQMSd4a94dS1coXtcphffio-nfQb__uQQ2j96PLQtMo4R1Azy2NolEQSlWG6asLjuI9Hz7PePfL6Wpxmria-Qq-bTNsH3_Iv7LzaketezwukcjccsvQVZe92fUGFt5vxmLXgpf8w6w1waZqAM8sE1jiUCYmjWDrRbUI1p4kmiVBcGKKETG2MEqENY1x1lc1ENLWABMqkOiDGrpopPYH6Ml-aU0CMKim0fVmo1Ia2ltoCrqUxJOEhZeoMmm5qFh_bczEW5ayc_337BvYHs_FoMRpOni7gwCGx7dW6hPq62Jgr2FOf62xVXHtYvwHRCqLy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=MF-LRTC%3A+Multi-filters+guided+low-rank+tensor+coding+for+image+restoration&rft.au=Lu%2C+Hongyang&rft.au=Li%2C+Sanqian&rft.au=Liu%2C+Qiegen&rft.au=Wang%2C+Yuhao&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=2104&rft.epage=2108&rft_id=info:doi/10.1109%2FICIP.2017.8296653&rft.externalDocID=8296653