The short-term load forecasting using the kernel recursive least-squares algorithm
This paper presents a new approach for short-term load forecasting problem based on the kernel recursive least-square algorithm (KRLS). The kernel recursive least-square algorithm is an online real-time kernel-based algorithm and also capable of efficiently solving in recursive manner nonlinear leas...
Uloženo v:
| Vydáno v: | 2010 3rd International Conference on Biomedical Engineering and Informatics Ročník 7; s. 2673 - 2676 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2010
|
| Témata: | |
| ISBN: | 1424464951, 9781424464951 |
| ISSN: | 1948-2914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a new approach for short-term load forecasting problem based on the kernel recursive least-square algorithm (KRLS). The kernel recursive least-square algorithm is an online real-time kernel-based algorithm and also capable of efficiently solving in recursive manner nonlinear least-square predictive problems. In this paper we consider the loads as a time series, through training the KRLS, we give the one-step ahead load forecasting. The test result of short term load forecasting series shows that the precision of load forecasting is greatly improved by means of the new method. |
|---|---|
| ISBN: | 1424464951 9781424464951 |
| ISSN: | 1948-2914 |
| DOI: | 10.1109/BMEI.2010.5639855 |

