A modified gradient-based backpropagation training method for neural networks

A improved gradient-based backpropagation training method is proposed for neural networks in this paper. Based on the Barzilai and Borwein steplength update and some technique of Resilient Propagation method, we adapt the new learning rate to improves the speed and the success rate. Experimental res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE International Conference on Granular Computing S. 450 - 453
Hauptverfasser: Xuewen Mu, Yaling Zhang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2009
Schlagworte:
ISBN:9781424448302, 1424448301
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A improved gradient-based backpropagation training method is proposed for neural networks in this paper. Based on the Barzilai and Borwein steplength update and some technique of Resilient Propagation method, we adapt the new learning rate to improves the speed and the success rate. Experimental results show that the proposed method has considerably improved convergence speed, and for the chosen test problems, outperforms other well-known training methods.
ISBN:9781424448302
1424448301
DOI:10.1109/GRC.2009.5255081