Parallel algorithms for the degree-constrained minimum spanning tree problem using nearest-neighbor chains and the heap-traversal technique

The degree-constrained minimum spanning tree (d-MST) problem attempts to find a minimum spanning tree with an added constraint that no nodes in the tree have a degree larger than a specified integer d. It is known that computing the d-MST is NP-hard for every d in the range 2 /spl les/ d /spl les/ (...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings. International Conference on Parallel Processing Workshop pp. 398 - 404
Main Authors: Li-Jen Mao, Sheau-Dong Lang
Format: Conference Proceeding
Language:English
Published: IEEE 2002
Subjects:
ISBN:9780769516806, 0769516807
ISSN:1530-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The degree-constrained minimum spanning tree (d-MST) problem attempts to find a minimum spanning tree with an added constraint that no nodes in the tree have a degree larger than a specified integer d. It is known that computing the d-MST is NP-hard for every d in the range 2 /spl les/ d /spl les/ (n - 2), where n denotes the total number of nodes. Several approximate algorithms (heuristics) have been proposed in the literature. We have previously proposed three approximate algorithms, IR, TC-RNN, and TC-NNC, for solving the d-MST problem, the last two (TC-RNN and TC-NNC) take advantage of nearest neighbors and their properties. Our experimental results showed that both the TC-RNN and TC-NNC algorithms consistently produce spanning trees with a smaller weight (better quality-of-solution) than that of IR, but using slightly longer execution time. We propose a new heap traversal technique that further improves the time efficiency of TC-RNN and TC-NNC. Our experiments using randomly generated, weighted graphs as inputs show that the TC-NNC algorithm outperforms the other two approximate algorithms in terms of the execution time and quality-of-solution.
AbstractList The degree-constrained minimum spanning tree (d-MST) problem attempts to find a minimum spanning tree with an added constraint that no nodes in the tree have a degree larger than a specified integer d. It is known that computing the d-MST is NP-hard for every d in the range 2 /spl les/ d /spl les/ (n - 2), where n denotes the total number of nodes. Several approximate algorithms (heuristics) have been proposed in the literature. We have previously proposed three approximate algorithms, IR, TC-RNN, and TC-NNC, for solving the d-MST problem, the last two (TC-RNN and TC-NNC) take advantage of nearest neighbors and their properties. Our experimental results showed that both the TC-RNN and TC-NNC algorithms consistently produce spanning trees with a smaller weight (better quality-of-solution) than that of IR, but using slightly longer execution time. We propose a new heap traversal technique that further improves the time efficiency of TC-RNN and TC-NNC. Our experiments using randomly generated, weighted graphs as inputs show that the TC-NNC algorithm outperforms the other two approximate algorithms in terms of the execution time and quality-of-solution.
Author Sheau-Dong Lang
Li-Jen Mao
Author_xml – sequence: 1
  surname: Li-Jen Mao
  fullname: Li-Jen Mao
  organization: Dept. of Inf. Manage., Yuda Inst. of Bus. Technol., Miaoli, Taiwan
– sequence: 2
  surname: Sheau-Dong Lang
  fullname: Sheau-Dong Lang
BookMark eNotkE1OwzAUhC1RJNrSC8DGF0ix49pOlqjiT6pEFyCW1Yv9khglTrBdJM7ApQnQ1Uijb77FLMjMDx4JueJszTkrb562-_3bOmcsX3MmSi31GVmVumBalZKrgqkZmXMpWJYzri7IIsb3CWZCyjn53kOArsOOQtcMwaW2j7QeAk0tUotNQMzM4GMK4Dxa2jvv-mNP4wjeO9_QNBF0DEPVYU-P8bfyCAFjyjy6pq0ml2mncaTg7Z-2RRizSfiJIUJHE5rWu48jXpLzGrqIq1Muyev93cv2Mds9Pzxtb3eZ41qmTAs0G7BGI2AtVa5sXmy40Bx1YWxR61LJwjC7sbkRlQLBGVOisrysoBTKiCW5_vc6RDyMwfUQvg6n78QPZxho4Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPPW.2002.1039757
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 404
ExternalDocumentID 1039757
GroupedDBID 23M
29O
6IE
6IK
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-73ec4adc7eaef5626d2841371e78cd8f79658c0d4d2c3b6a310063bd19ba936c3
IEDL.DBID RIE
ISBN 9780769516806
0769516807
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000177667600052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-2016
IngestDate Tue Aug 26 18:16:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-73ec4adc7eaef5626d2841371e78cd8f79658c0d4d2c3b6a310063bd19ba936c3
PageCount 7
ParticipantIDs ieee_primary_1039757
PublicationCentury 2000
PublicationDate 20020000
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 20020000
PublicationDecade 2000
PublicationTitle Proceedings. International Conference on Parallel Processing Workshop
PublicationTitleAbbrev ICPPW
PublicationYear 2002
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020355
ssj0000395784
Score 1.4935259
Snippet The degree-constrained minimum spanning tree (d-MST) problem attempts to find a minimum spanning tree with an added constraint that no nodes in the tree have a...
SourceID ieee
SourceType Publisher
StartPage 398
SubjectTerms Computer science
Heuristic algorithms
Information management
Iterative algorithms
Lagrangian functions
Nearest neighbor searches
Neural networks
Parallel algorithms
Traveling salesman problems
Tree graphs
Title Parallel algorithms for the degree-constrained minimum spanning tree problem using nearest-neighbor chains and the heap-traversal technique
URI https://ieeexplore.ieee.org/document/1039757
WOSCitedRecordID wos000177667600052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmDioyC-5YERQxKntjNXVLBUGUCwIefslEptipKUP8Gf5s5Ni5BY2JJITiLr7Ht353uPsesyBh3ZNBMqsaVAo0hEJk0qMJgAdB_KpEUZxCb0eGxeX7N8i91semG89-Hwmb-ly1DLdwtYUqrsjsqWeqC32bbWatWrtcmnRFRwop7LLtiKZFA8xQUdoSXEahWyI55QJtId8876Xq27aaLs7nGY5y_h6MJt97lfuivB7Yz2_vfD--zop3-P5xvPdMC2fHXI9tYCDrxbz332lduatFRm3M4mi3ravs8bjiiWIyrkzmMo7gUQgCQdCe848ZDMl3OOu1BQOuJU0uadJg2nI_QTXhEpbtOKinKuaGAc3nFww23lwmtx8_8QLYke1Y2d8Q2H7BF7Ht0_DR9Ep84gpgg5WqGlh9Q60N76ElGUcujpYqljrw04U2qilYHIpS4BWShLlQQlCxdnhc2kAnnMetWi8ieMl5GxALEdQJGkCGEMxM5BYaCQiQaZnrI-ze3bx4qA462b1rO_H5-z3SDZEvIkF6zX1kt_yXbgs5029VWwmm9fZ78r
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoVConSqEC-oEPPWJwYq_tnFERqHSVA6jcVs7YgZV2syjJ9k_0TzPjzW6F1EtvSSQnkTX2vJnxvMfYtzoDK70uhMl9LdAoclEopwUGE4Duwzhd1Ulswo7H7uGhKLfY2aYXJsaYDp_Fc7pMtfywgCWlyi6obGlH9g3bGWmdy1W31iajIqnkRF2XQ7glVdI8xSUt0RYyswraEVEYJ-3AvbO-N-t-Gllc3FyW5a90eOF8-OAr5ZXkeK72_u-X37PDvx18vNz4pn22FZsPbG8t4cCHFX3A_pS-JTWVGfezx0U77Z_mHUccyxEX8hAxGI8CCEKSkkQMnJhI5ss5x30oaR1xKmrzQZWG0yH6R94QLW7Xi4ayrmhiHJ5wcMd9E9Jrcft_Fj3JHrWdn_ENi-whu7_6fnd5LQZ9BjFF0NELqyJoH8BGH2vEUSagr8uUzaJ1EFxtiVgGZNAhB1UZT7UEo6qQFZUvlAH1kW03iyYeMV5L5wEyP4Iq1whiHGQhQOWgUrkFpY_ZAc3t5HlFwTEZpvXk349P2bvru5-3k9ub8Y9PbDcJuKSsyWe23bfL-IW9hd_9tGu_Jgt6AXy5wnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings.+International+Conference+on+Parallel+Processing+Workshop&rft.atitle=Parallel+algorithms+for+the+degree-constrained+minimum+spanning+tree+problem+using+nearest-neighbor+chains+and+the+heap-traversal+technique&rft.au=Li-Jen+Mao&rft.au=Sheau-Dong+Lang&rft.date=2002-01-01&rft.pub=IEEE&rft.isbn=9780769516806&rft.issn=1530-2016&rft.spage=398&rft.epage=404&rft_id=info:doi/10.1109%2FICPPW.2002.1039757&rft.externalDocID=1039757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-2016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-2016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-2016&client=summon