Data Privacy for a ρ-Recoverable Function

A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE International Symposium on Information Theory (ISIT) s. 1046 - 1050
Hlavní autoři: Nageswaran, Ajaykrishnan, Narayan, Prakash
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2018
Témata:
ISSN:2157-8117
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Privacy is measured by the probability of error incurred by the querier in estimating the data from the query response. We analyze single and multiple independent query responses, with each response satisfying the recoverability requirement, that provide maximum privacy to the user. Achievability schemes with explicit randomization mechanisms for query responses are given and their privacy compared with converse upper bounds.
ISSN:2157-8117
DOI:10.1109/ISIT.2018.8437327