Data Privacy for a ρ-Recoverable Function

A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE International Symposium on Information Theory (ISIT) S. 1046 - 1050
Hauptverfasser: Nageswaran, Ajaykrishnan, Narayan, Prakash
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2018
Schlagworte:
ISSN:2157-8117
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Privacy is measured by the probability of error incurred by the querier in estimating the data from the query response. We analyze single and multiple independent query responses, with each response satisfying the recoverability requirement, that provide maximum privacy to the user. Achievability schemes with explicit randomization mechanisms for query responses are given and their privacy compared with converse upper bounds.
ISSN:2157-8117
DOI:10.1109/ISIT.2018.8437327