An Improved Gaussian Dynamic Particle Swarm Optimization Algorithm

An improved Gaussian dynamic particle swarm optimization (PSO) algorithm is proposed in this paper. In the proposed version of PSO, the original swarm of particles is initialized by canonical PSO. The time varying linear inertial weight is reintroduced to add to the position update formula. And the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:CIS 2006 : 2006 International Conference on Computational Intelligence and Security : Guangzhou, China, November 3-6, 2006 : proceedings Ročník 1; s. 316 - 319
Hlavní autoři: Qingjian Ni, Hancheng Xing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2006
Témata:
ISBN:1424406048, 9781424406043
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An improved Gaussian dynamic particle swarm optimization (PSO) algorithm is proposed in this paper. In the proposed version of PSO, the original swarm of particles is initialized by canonical PSO. The time varying linear inertial weight is reintroduced to add to the position update formula. And the crazinness variable is also used in order to maintain the diversity of particle swarms. The performance of improved Gaussian dynamic PSO is demonstrated by applying it to several benchmark functions and comparing to other variants of PSO
ISBN:1424406048
9781424406043
DOI:10.1109/ICCIAS.2006.294146