Efficient Computation of Simplicial Homology through Acyclic Matching

We consider the problem of efficiently computing homology with Z coefficients as well as homology generators for simplicial complexes of arbitrary dimension. We analyze, compare and discuss the equivalence of different methods based on combining reductions, co reductions and discrete Morse theory. W...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing s. 587 - 593
Hlavní autori: Fugacci, Ulderico, Iuricich, Federico, De Floriani, Leila
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2014
Predmet:
ISBN:9781479984473, 1479984477
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the problem of efficiently computing homology with Z coefficients as well as homology generators for simplicial complexes of arbitrary dimension. We analyze, compare and discuss the equivalence of different methods based on combining reductions, co reductions and discrete Morse theory. We show that the combination of these methods produces theoretically sound approaches which are mutually equivalent. One of these methods has been implemented for simplicial complexes by using a compact data structure for representing the complex and a compact encoding of the discrete Morse gradient. We present experimental results and discuss further developments.
ISBN:9781479984473
1479984477
DOI:10.1109/SYNASC.2014.84