Class-wise deep dictionaries for EEG classification

In this work we propose a classification framework called class-wise deep dictionary learning (CWDDL). For each class, multiple levels of dictionaries are learnt using features from the previous level as inputs (for first level the input is the raw training sample). It is assumed that the cascaded d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 International Joint Conference on Neural Networks (IJCNN) s. 3556 - 3563
Hlavní autoři: Khurana, Prerna, Majumdar, Angshul, Ward, Rabab
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2016
Témata:
ISSN:2161-4407
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work we propose a classification framework called class-wise deep dictionary learning (CWDDL). For each class, multiple levels of dictionaries are learnt using features from the previous level as inputs (for first level the input is the raw training sample). It is assumed that the cascaded dictionaries form a basis for expressing test samples for that class. Based on this assumption sparse representation based classification is employed. Benchmarking experiments have been carried out on some deep learning datasets (MNIST and its variations, CIFAR and SVHN); our proposed method has been compared with Deep Belief Network (DBN), Stacked Autoencoder, Convolutional Neural Net (CNN) and Label Consistent KSVD (dictionary learning). We find that our proposed method yields better results than these techniques and requires much smaller run-times. The technique is applied for Brain Computer Interface (BCI) classification problems using EEG signals. For this problem our method performs significantly better than Convolutional Deep Belief Network(CDBN).
ISSN:2161-4407
DOI:10.1109/IJCNN.2016.7727656