Adaptive stepsize selection for tracking in a non-stationary environment: a new pre-emptive approach
We consider the problem of using a stochastic approximation algorithm to perform online tracking in a non-stationary environment characterized by infrequent and sudden "regime changes". The primary contribution of this paper is a new approach for adaptive stepsize selection that is suitabl...
Uloženo v:
| Vydáno v: | Proceedings of the 45th IEEE Conference on Decision and Control s. 1817 - 1822 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2006
|
| Témata: | |
| ISBN: | 9781424401710, 1424401712 |
| ISSN: | 0191-2216 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the problem of using a stochastic approximation algorithm to perform online tracking in a non-stationary environment characterized by infrequent and sudden "regime changes". The primary contribution of this paper is a new approach for adaptive stepsize selection that is suitable for this type of non-stationarity. Our approach is pre-emptive rather than reactive, and is based on a strategy of maximising the rate of adaptation, subject to a constraint on the probability that the iterates fall outside a pre-determined range of "acceptable error". The theoretical basis for our approach is provided by the theory of weak convergence for stochastic approximation algorithms |
|---|---|
| ISBN: | 9781424401710 1424401712 |
| ISSN: | 0191-2216 |
| DOI: | 10.1109/CDC.2006.377312 |

