Active Fences against Voltage-based Side Channels in Multi-Tenant FPGAs
Dynamic and partial reconfiguration together with hardware parallelism make FPGAs attractive as virtualized accelerators. However, recently it has been shown that multi-tenant FPGAs are vulnerable to remote side-channel attacks (SCA) from malicious users, allowing them to extract secret keys without...
Saved in:
| Published in: | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design pp. 1 - 8 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2019
|
| Subjects: | |
| ISSN: | 1558-2434 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Dynamic and partial reconfiguration together with hardware parallelism make FPGAs attractive as virtualized accelerators. However, recently it has been shown that multi-tenant FPGAs are vulnerable to remote side-channel attacks (SCA) from malicious users, allowing them to extract secret keys without a logical connection to the victim core. Typical mitigations against such attacks are hiding and masking schemes, to increase attackers' efforts in terms of side-channel measurements. However, they require significant efforts and tailoring for a specific algorithm, hardware implementation and mapping. In this paper, we show a hiding countermeasure against voltage-based SCA that can be integrated into any implementation, without requiring modifications or tailoring to the protected module. We place a properly mapped Active Fence of ring oscillators between victim and attacker circuit, enabled as a feedback of an FPGA-based sensor, leading to reduced side-channel leakage. Our experimental results based on a Lattice ECP5 FPGA and an AES-128 module show that two orders of magnitude more traces are needed for a successful key recovery, while no modifications to the underlying cryptographic module are necessary. |
|---|---|
| ISSN: | 1558-2434 |
| DOI: | 10.1109/ICCAD45719.2019.8942094 |