Image compression using learned dictionaries by RLS-DLA and compared with K-SVD

The recently presented recursive least squares dictionary learning algorithm (RLS-DLA) is tested in a general image compression application. Dictionaries are learned in the pixel domain and in the 9/7 wavelet domain, and then tested in a straightforward compression scheme. Results are compared with...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 1517 - 1520
Hlavní autori: Skretting, Karl, Engan, Kjersti
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2011
Predmet:
ISBN:9781457705380, 1457705389
ISSN:1520-6149
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The recently presented recursive least squares dictionary learning algorithm (RLS-DLA) is tested in a general image compression application. Dictionaries are learned in the pixel domain and in the 9/7 wavelet domain, and then tested in a straightforward compression scheme. Results are compared with state-of-the-art compression methods. The proposed compression scheme using RLS DLA learned dictionaries in the 9/7 wavelet domain per forms better than using dictionaries learned by other methods. The compression rate is just below the JPEG 2000 rate which is promising considering the simple entropy coding used.
ISBN:9781457705380
1457705389
ISSN:1520-6149
DOI:10.1109/ICASSP.2011.5946782