Learned Convolutional Sparse Coding
We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dic...
Gespeichert in:
| Veröffentlicht in: | 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) S. 2191 - 2195 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2018
|
| Schlagworte: | |
| ISSN: | 2379-190X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP.2018.8462313 |