Learned Convolutional Sparse Coding

We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) S. 2191 - 2195
Hauptverfasser: Sreter, Hillel, Giryes, Raja
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2018
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime.
AbstractList We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime.
Author Giryes, Raja
Sreter, Hillel
Author_xml – sequence: 1
  givenname: Hillel
  surname: Sreter
  fullname: Sreter, Hillel
  organization: School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Raja
  surname: Giryes
  fullname: Giryes, Raja
  organization: School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
BookMark eNotj8FKxDAURaMoOI79gtkMuG7NS5rkZSlFR6GgUBfuhqR5kUhNh3YU_HsLzurCWRzOvWYXeczE2AZ4BcDt3XNz33WvleCAFdZaSJBnrLAGQUnUtVaI52wlpLElWP5-xYp5_uScC421UXrFbltyU6awbcb8Mw7fxzRmN2y7g5tmWmBI-eOGXUY3zFScds26x4e35qlsX3ZLQFsmMOpYSg8icgzkvalVABlBy-BDj9qAjdwvwYhEIJXurbAyOht01NH35KJcs82_NRHR_jClLzf97k-n5B8z3kIC
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2018.8462313
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538646588
1538646587
EISSN 2379-190X
EndPage 2195
ExternalDocumentID 8462313
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-3b12f08debb745d13f163dbdc86719f0b10988ee1356c9293fa9d6f6fbceaf3
IEDL.DBID RIE
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446384602074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:54:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3b12f08debb745d13f163dbdc86719f0b10988ee1356c9293fa9d6f6fbceaf3
PageCount 5
ParticipantIDs ieee_primary_8462313
PublicationCentury 2000
PublicationDate 2018-April
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684756
ssj0008748
Score 2.4709086
Snippet We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA...
SourceID ieee
SourceType Publisher
StartPage 2191
SubjectTerms Computational modeling
Convolution
Convolutional codes
Convolutional Sparse Coding
Dictionaries
Encoding
ISTA
LISTA
Neural networks
Noise reduction
Sparse Coding
Task analysis
Title Learned Convolutional Sparse Coding
URI https://ieeexplore.ieee.org/document/8462313
WOSCitedRecordID wos000446384602074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlrxzYIeTZvdbJPsUYpFQUphRXorm2QCBWmltv39TtKlKnjxFgYSMpmQbyaZ-QJwZziBopSW9VEjy3NlmeHaMIIW8q-99lV8Lnh7UaORnkyKcQPud7UwiBiTz7AbmvEt3y3sOlyV9QgryR0RTWgqJbe1Wrv7lMBaEpnM61NYq1zXLEMpL3rPg4eyHIdULt2th_n1n0qEk-Hh_yZyBJ3vurxkvEOcY2jg_AQOflAKtuE2EqaiS6jLpt5W1XtSflAAiyQMHTtQDh9fB0-s_giBzQjdV0yYNPNcOzRG5X2XCk9elDPOBnK6wnNDGmqNmIq-tOTvCFphJ730xmLlxSm05os5nkFSuJTil8rwzMlcuYzMkmeKV-gprigEP4d2UHb6sWW6mNZ6XvwtvoT9sJ7bPJYraK2Wa7yGPbtZzT6XN9E8XywKjlc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED-cG2x72YeOfa-wPa6atmmbPg6ZKHMiVIZv0iQXEETFqX__LrG4Dfayt3CQkMuF_O6Su18AniQjUEwS5cco0Oc8Vb5kQvoELeRfG2EK91zw0Uv7fTEaZYMKPO9qYRDRJZ9hwzbdW76eq7W9KmsSVpI7Eu3Bfsx5yLbVWrsbFctb4rjMy3NYpFyUPEMBy5rd1kueD2wyl2iUA_36UcUBSvvkf1M5hfp3ZZ432GHOGVRwdg7HP0gFa_DoKFNRe9RlU26sYurlCwphkYS2Yx3y9uuw1fHLrxD8CeH7yo9kEBomNEqZ8lgHkSE_SkutLD1dZpgkDYVADKI4UeTxRLTGOjGJkQoLE11AdTaf4SV4mQ4ogikkC3XCUx2SYXiYsgINRRZZxK6gZpUdL7ZcF-NSz-u_xQ9w2Bm-98a9bv_tBo7s2m6zWm6hulqu8Q4O1GY1-VzeO1N9AcjQkZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Learned+Convolutional+Sparse+Coding&rft.au=Sreter%2C+Hillel&rft.au=Giryes%2C+Raja&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2191&rft.epage=2195&rft_id=info:doi/10.1109%2FICASSP.2018.8462313&rft.externalDocID=8462313