Patient-specific ECG classification based on recurrent neural networks and clustering technique

In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates....

Full description

Saved in:
Bibliographic Details
Published in:2017 13th IASTED International Conference on Biomedical Engineering (BioMed) pp. 63 - 67
Main Authors: Zhang, Chenshuang, Wang, Guijin, Zhao, Jingwei, Gao, Pengfei, Lin, Jianping, Yang, Huazhong
Format: Conference Proceeding
Language:English
Published: International Association of Science and Technology for Development--IASTED 2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates. Morphology information including the present beat and the T wave of former beat is fed into RNN to learn underlying features automatically. Clustering method is employed to find representative beats as the training data. Evaluated on the MIT-BIH Arrhythmia Database, the experimental results show that proposed algorithm achieves the state-of-the-art classification performance.
AbstractList In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density based clustering technique. We use RNN to learn time correlation among ECG signal points and to classify ECG beats with different heart rates. Morphology information including the present beat and the T wave of former beat is fed into RNN to learn underlying features automatically. Clustering method is employed to find representative beats as the training data. Evaluated on the MIT-BIH Arrhythmia Database, the experimental results show that proposed algorithm achieves the state-of-the-art classification performance.
Author Wang, Guijin
Lin, Jianping
Yang, Huazhong
Gao, Pengfei
Zhang, Chenshuang
Zhao, Jingwei
Author_xml – sequence: 1
  givenname: Chenshuang
  surname: Zhang
  fullname: Zhang, Chenshuang
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Guijin
  surname: Wang
  fullname: Wang, Guijin
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Jingwei
  surname: Zhao
  fullname: Zhao, Jingwei
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Pengfei
  surname: Gao
  fullname: Gao, Pengfei
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Jianping
  surname: Lin
  fullname: Lin, Jianping
  organization: Beijing Xinheyidian Technology Co.,Ltd, China
– sequence: 6
  givenname: Huazhong
  surname: Yang
  fullname: Yang, Huazhong
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNotjL1OwzAUhY0EA5SuLCx-gZTYjp3rEUWlIFWiA8yRY1-DRXCK7Qjx9gTR6TtH5-eKnMcpIiE3rN5wwdTdYcNr1m5A8qrm-oysdQs1gAaldS0vSX8wJWAsVT6iDT5Yuu121I4m5z-3hFOkg8no6CIS2jmlpU4jzsmMC8r3lD4yNdEtqzkXTCG-0YL2PYavGa_JhTdjxvWJK_L6sH3pHqv98-6pu99XgbWyVAJAqUZI20gubMu852AQ0CFnTqJseeO89dw7JbgfnEZtGxi4Ewp8Y5hYkdv_34CI_TGFT5N--ha04EqLX2I7UoM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.2316/P.2017.852-029
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780889869905
0889869901
EndPage 67
ExternalDocumentID 7893269
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-38866435c4523c71ff28ae8ede21d5e5724dfcf2fd632fbd9e9c48b2d368f4a13
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426983500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:55 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-38866435c4523c71ff28ae8ede21d5e5724dfcf2fd632fbd9e9c48b2d368f4a13
PageCount 5
ParticipantIDs ieee_primary_7893269
PublicationCentury 2000
PublicationDate 20170000
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationTitle 2017 13th IASTED International Conference on Biomedical Engineering (BioMed)
PublicationTitleAbbrev BIOMED
PublicationYear 2017
Publisher International Association of Science and Technology for Development--IASTED
Publisher_xml – name: International Association of Science and Technology for Development--IASTED
Score 1.939305
Snippet In this paper, we propose a novel patient-specific electrocardiogram (ECG) classification algorithm based on the recurrent neural networks (RNN) and density...
SourceID ieee
SourceType Publisher
StartPage 63
SubjectTerms Classification algorithms
Data models
Deep Learning
Density Based Clustering Algorithm
Diseases
ECG Classification
Electrocardiography
Morphology
Recurrent neural networks
Transforms
Title Patient-specific ECG classification based on recurrent neural networks and clustering technique
URI https://ieeexplore.ieee.org/document/7893269
WOSCitedRecordID wos000426983500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIv4lgdG3NaOYztz1cKAqgwgdav8cZYqoRT1g9-Pz6kKAwtTnEhxpPPw3l3uvSPkUVYBnCsVswkPmIymYi4lP8yZseUpyQ0lz0LhVz2fm8Wiqjvk6aiFAYDcfAZDXOZ_-WHt91gqG2mDbKPqkq7WqtVqtT6MiaSoUY2NWnpoSsHGyBh_TUvJYDE7-99nzsngR3VH6yOeXJAONH2yrFvjU4aSSGzrodPJM_XIefEux5UiFAWaFhusnqPfEkWfSvuRLrnLe0ttE9Jbe7RFSJvTo3XrgLzPpm-TF3YYisBWCel3rDBGJRZReplSSK95jMJYMBBA8FBCqYUM0UcRgypEdKGCykvjRCiUidLy4pL0mnUDV4RWOGxaqCJBOMjgtHWRy8i1S3sIr8I16WNwlp-t78XyEJebvx_fklOMf1ueuCO93WYP9-TEf-1W281DPqxvH12Z_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQToBbxjQdG3DaOEztz1VJEqTIUqVsUf0mVUIralN-Pz6kKAwtTnEhxpPPw3l3uvQN45JmxSiUpLT0eUO5kRpVPfqiSgzLySa5JoiAUnorZTC4WWd6Cp70Wxlobms9sD5fhX75Z6S2WyvpCItvIDuAw4ZwNGrVW48ToaUraz7FVS_RkwugAOeOveSkBLsan__vQGXR_dHck3yPKObRs1YEib6xPKYoisbGHjIbPRCPrxbsQWYJgZIhfrLF-jo5LBJ0qyw9_CX3eG1JWxr-1RWMEvznZm7d24X08mg8ndDcWgS491tc0ljL1PCLR3CeRWkTOMVlaaY1lkUlsIhg3TjvmTBozp0xmM82lYiZOpeNlFF9Au1pV9hJIhuOmWRp7ELfcKFEqF3EXCeX3YDo1V9DB4BSfjfNFsYvL9d-PH-B4Mn-bFtOX2esNnOBZNMWKW2jX6629gyP9VS836_twcN9NoJ1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+13th+IASTED+International+Conference+on+Biomedical+Engineering+%28BioMed%29&rft.atitle=Patient-specific+ECG+classification+based+on+recurrent+neural+networks+and+clustering+technique&rft.au=Zhang%2C+Chenshuang&rft.au=Wang%2C+Guijin&rft.au=Zhao%2C+Jingwei&rft.au=Gao%2C+Pengfei&rft.date=2017-01-01&rft.pub=International+Association+of+Science+and+Technology+for+Development--IASTED&rft.spage=63&rft.epage=67&rft_id=info:doi/10.2316%2FP.2017.852-029&rft.externalDocID=7893269