AI-facilitated coating corrosion assessment system for productivity enhancement

Application of protective coatings is the primary method used to protect marine and offshore structures from coating breakdown and corrosion (CBC). Assessment of CBC is the major aspect in coating failure management. Subjective assessment methods cause unnecessary maintenance cost and higher risk of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Conference on Industrial Electronics and Applications (Online) s. 606 - 610
Hlavní autori: Liu, Lili, Tan, Estee, Zhen, Yongda, Yin, Xi Jiang, Cai, Zhi Qiang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2018
Predmet:
ISSN:2158-2297
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Application of protective coatings is the primary method used to protect marine and offshore structures from coating breakdown and corrosion (CBC). Assessment of CBC is the major aspect in coating failure management. Subjective assessment methods cause unnecessary maintenance cost and higher risk of failure. To improve efficiency and productivity, an integrated coating breakdown and corrosion (CBC) assessment system is developed. This AI-facilitated CBC inspection system implements a deep transfer learning technique to automate CBC assessment, it includes a faster region-base convolutional neural network (faster R-CNN) architecture and a vgg19 model for deep transfer learning, an instance-aware semantic segmentation method is developed for CBC measurement and grading. This method provides efficient inspection techniques for marine and offshore industries.
ISSN:2158-2297
DOI:10.1109/ICIEA.2018.8397787