Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm
In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, var...
Saved in:
| Published in: | 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) pp. 1 - 4 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.02.2019
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance. |
|---|---|
| AbstractList | In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance. |
| Author | Lee, Jung Ho Kim, Kwang-Yul Shin, Yoan |
| Author_xml | – sequence: 1 givenname: Jung Ho surname: Lee fullname: Lee, Jung Ho organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea – sequence: 2 givenname: Kwang-Yul surname: Kim fullname: Kim, Kwang-Yul organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea – sequence: 3 givenname: Yoan surname: Shin fullname: Shin, Yoan organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea |
| BookMark | eNotj7lOw0AYhBcJCpLwBGn2BWz2yF6lsQhYSoKESB3t8dtZyQey1wVvj6WkmZmvGc2s0GM_9IDQlpKcUmJeq7KoqjJnhJpcS2kIYQ9oRQXXUmnGxDP63oNN8wi46mwD2ZudIOBiTkNnU_T4OIS5XdLQ47K10xTr6G94hHQdAj5PsW9weTrhom2GMaZrt0FPtW0neLn7Gp337z_lZ3b4-lgGHbJIlUgZVbV01jsIyihRA6PecqKD4MZwEJJ4RXfOs2ChltTZAItq7YiQO8Mc5Wu0vfVGALj8jrGz49_lfpP_A7-4TSM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICAIIC.2019.8669002 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538678225 9781538678220 |
| EndPage | 4 |
| ExternalDocumentID | 8669002 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i175t-17f6bacbed7975fe21ca308d53993e560c714bc2daef61bade61b88b056492b13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465405500116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:39:03 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-17f6bacbed7975fe21ca308d53993e560c714bc2daef61bade61b88b056492b13 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8669002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Feb. |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb. |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) |
| PublicationTitleAbbrev | ICAIIC |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.0085804 |
| Snippet | In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | automatic modulation classification Classification algorithms convolutional neural network Convolutional neural networks cumulant Deep learning Feature extraction Modulation Signal to noise ratio |
| Title | Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm |
| URI | https://ieeexplore.ieee.org/document/8669002 |
| WOSCitedRecordID | wos000465405500116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGjcf1l0xxrcVhwZYjCbiOvedGBW6W2_v0maZkIXryEJAQC7xHeS_K97yPkKkAPI62QxRBLFmkNTKIKmJBg8nMALaRTLXnkRZEsFmI-INfbWhhEdOAzvLFd95evqrK1T2WTJDZ3OcscucN53NVq9URCvicmeZbmeWbRWsb93cpfkikuYkz3_7fXARn_lN7R-TaoHJIBbkbkySZqbY00X5vjz-5M5FE0bZvK8a3SWaV6ES7qNC4t-qcbzpw-NHW4AJoVBU3fX6t61bytx-Rlev-cPbBeDIGtTIRvmM91DLIEVFzwW42BX8rQS5Rllg3R5C0l9yMoAyVRxz5IhaZNEjAJTiQC8MMjMtxUGzwmFMFTkU6Md7g5vwjCtzLqMUSYQCgFnJCRtcfyo-O7WPamOP17-ozsWZN3SOZzMmzqFi_IbvnVrD7rS-ekbxlmlxE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRuP6ybY6zOFbcypAJu4285kUHbpXa-vebpGUiePESmlAovJf0vSTf-z5Cbjx0MFASWQihYIFSwARKj3EBOj8HUFxY1ZJJlGXxYsFnHXK7rYVBRAs-wzvzaO_yZZHX5qhsEId6L2eYI3eMclZbrdVSCbkOH6TJME0Tg9fSE6B595doio0Zo4P_fe2Q9H-K7-hsG1aOSAc3PfJsUrW6RJqu9Q-APejYI-mwrgrLuEqnhWxluKhVuTT4n6Y7tQrR1CIDaJJldPj-WpSr6m3dJy-jx3kyZq0cAlvpGF8xN1IhiBxQRjy6V-i5ufCdWBpuWR915pJHbgC5JwWq0AUhUbdxDDrFCbgHrn9MuptigyeEIjgyULH2T6RXMAJ3jZB6CAHG4AsOp6Rn7LH8aBgvlq0pzv4eviZ74_l0spyk2dM52Tfmb3DNF6RblTVekt38q1p9llfWYd8n0ppa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Conference+on+Artificial+Intelligence+in+Information+and+Communication+%28ICAIIC%29&rft.atitle=Feature+Image-Based+Automatic+Modulation+Classification+Method+Using+CNN+Algorithm&rft.au=Lee%2C+Jung+Ho&rft.au=Kim%2C+Kwang-Yul&rft.au=Shin%2C+Yoan&rft.date=2019-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICAIIC.2019.8669002&rft.externalDocID=8669002 |