Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm

In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, var...

Full description

Saved in:
Bibliographic Details
Published in:2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) pp. 1 - 4
Main Authors: Lee, Jung Ho, Kim, Kwang-Yul, Shin, Yoan
Format: Conference Proceeding
Language:English
Published: IEEE 01.02.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance.
AbstractList In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance.
Author Lee, Jung Ho
Kim, Kwang-Yul
Shin, Yoan
Author_xml – sequence: 1
  givenname: Jung Ho
  surname: Lee
  fullname: Lee, Jung Ho
  organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea
– sequence: 2
  givenname: Kwang-Yul
  surname: Kim
  fullname: Kim, Kwang-Yul
  organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea
– sequence: 3
  givenname: Yoan
  surname: Shin
  fullname: Shin, Yoan
  organization: School of Electronic Engineering, Soongsil University, Seoul, 06978, Korea
BookMark eNotj7lOw0AYhBcJCpLwBGn2BWz2yF6lsQhYSoKESB3t8dtZyQey1wVvj6WkmZmvGc2s0GM_9IDQlpKcUmJeq7KoqjJnhJpcS2kIYQ9oRQXXUmnGxDP63oNN8wi46mwD2ZudIOBiTkNnU_T4OIS5XdLQ47K10xTr6G94hHQdAj5PsW9weTrhom2GMaZrt0FPtW0neLn7Gp337z_lZ3b4-lgGHbJIlUgZVbV01jsIyihRA6PecqKD4MZwEJJ4RXfOs2ChltTZAItq7YiQO8Mc5Wu0vfVGALj8jrGz49_lfpP_A7-4TSM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAIIC.2019.8669002
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538678225
9781538678220
EndPage 4
ExternalDocumentID 8669002
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-17f6bacbed7975fe21ca308d53993e560c714bc2daef61bade61b88b056492b13
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465405500116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:03 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-17f6bacbed7975fe21ca308d53993e560c714bc2daef61bade61b88b056492b13
PageCount 4
ParticipantIDs ieee_primary_8669002
PublicationCentury 2000
PublicationDate 2019-Feb.
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb.
PublicationDecade 2010
PublicationTitle 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)
PublicationTitleAbbrev ICAIIC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.008688
Snippet In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms automatic modulation classification
Classification algorithms
convolutional neural network
Convolutional neural networks
cumulant
Deep learning
Feature extraction
Modulation
Signal to noise ratio
Title Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm
URI https://ieeexplore.ieee.org/document/8669002
WOSCitedRecordID wos000465405500116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGjcU3bNcmxFoc9rAxR2G3kx6sO3Cq19e83SctE8OIlJCVQeI_yvaTf-z6EbsAkoTJRQJSQjFjEk4SHRpFAMwtGpWRJKb3ZBCsKvlyKxQDd7nphAMCTz-DOTf2_fFPp1l2VTXhiz3JOOXKPsaTr1eqFhGggJnmW5nnm2Fo2_d3OX5YpHjFmh_971xEa_7Te4cUOVI7RALYj9OQKtbYGnG_s50_uLfIYnLZN5fVW8bwyvQkX9h6Xjv3TLefeHxp7XgDOigKn769VvW7eNmP0Mnt4zh5Jb4ZA1hbhG0JZmSipFRgm2LSEkGoZBdw4ZdkIbN2iGY2VDo2EMqFKGrAj58oWOLEIFY1O0HBbbeEUYcZdTuSURmBiqoUwpXQNtFTIaZyE5gyNXDxWH53exaoPxfnfjy_QgQt5x2S-RMOmbuEK7euvZv1ZX_skfQMKEpXK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCvqksonf5sFH45p-pXmcRVlxK0Mm7G3k41YHbpXa-vtN0jERfPGlpCEQuAk5N-255yB0Azr2pQ48IrlgxCCeIImvJfEUM2BUCBYXwplNsDxP5nM-7aDbbS0MADjyGdzZpvuXr0vV2E9lgyQ2dzmrHLkThaHvtdVaGykh6vFBlg6zLLV8LbMB2rG_TFMcZjwe_G-2Q9T_Kb7D0y2sHKEOrHvo2aZqTQU4W5kDgNwb7NF42NSlU1zFk1JvbLiwc7m0_J_2deIcorFjBuA0z_Hw_bWslvXbqo9eHh9m6Yhs7BDI0mB8TSgrYimUBM04iwrwqRKBl2irLRuAyVwUo6FUvhZQxFQKDeaZJNKkOCH3JQ2OUXddruEEYZbYVRERDUCHVHGuC2FLaCkXURj7-hT1bDwWH63ixWITirO_u6_R3mg2GS_GWf50jvZt-Fte8wXq1lUDl2hXfdXLz-rKLdg3A8uZEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Conference+on+Artificial+Intelligence+in+Information+and+Communication+%28ICAIIC%29&rft.atitle=Feature+Image-Based+Automatic+Modulation+Classification+Method+Using+CNN+Algorithm&rft.au=Lee%2C+Jung+Ho&rft.au=Kim%2C+Kwang-Yul&rft.au=Shin%2C+Yoan&rft.date=2019-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICAIIC.2019.8669002&rft.externalDocID=8669002