Improved fuzzy clustering algorithm in Long-Term load forecasting of power system

There are some drawbacks of the classical fuzzy clustering algorithm as follow: Firstly, the computing of independent variable weights is unreasonable. Secondly, the set of horizontal section members is slurred. Thirdly, the correlation factor's computational methods are sigular. As to compensa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 3rd IEEE International Conference on Computer Science and Information Technology Ročník 9; s. 556 - 560
Hlavní autori: Chengwei Zhang, Ziguo Yang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2010
Predmet:
ISBN:9781424455379, 1424455375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:There are some drawbacks of the classical fuzzy clustering algorithm as follow: Firstly, the computing of independent variable weights is unreasonable. Secondly, the set of horizontal section members is slurred. Thirdly, the correlation factor's computational methods are sigular. As to compensate for these aforementioned drawbacks, a new algorithm named improved fuzzy clustering algorithm is improved in this essay. The new algorithm uses association analysis to compute the independent variable weights, sets up a method warehouse and uses it to calculation the correlation factors, and selects distinct members of the equivalent matrix as the set of horizontal section. The demonstration indicates that the new algorithm increased the accuracy of forecasting result.
ISBN:9781424455379
1424455375
DOI:10.1109/ICCSIT.2010.5563614