Case study: parallel Lagrangian visualization applied to natural convective flows

Presents a visualization technique based on particle tracking. The technique consists in defining a set of points distributed on a closed surface and following the surface deformations as the velocity field changes in time. Deformations of the surface contain information about dynamics of the flow;...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Parallel and Large Data Visualization and Graphics Symposium 2001 s. 41 - 148
Hlavní autori: de la Cruz, L.M., Garcia, I., Godoy, V., Ramos, E.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 2001
Predmet:
ISBN:0780372239, 9780780372238
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Presents a visualization technique based on particle tracking. The technique consists in defining a set of points distributed on a closed surface and following the surface deformations as the velocity field changes in time. Deformations of the surface contain information about dynamics of the flow; in particular, it is possible to identify zones where flow stretching and foldings occur. Because the points on the surface are independent of each other, it is possible to calculate the trajectory of each point concurrently. Two parallel algorithms are studied; the first one for a shared memory Origin 2000 supercomputer and the second one for a distributed memory PC cluster. The technique is applied to a fluid moving by natural convection inside a cubic container.
ISBN:0780372239
9780780372238
DOI:10.1109/PVGS.2001.964402