Multistage random sampling genetic-algorithm-based fuzzy c-means clustering algorithm

This work presents a multistage random sampling genetic-algorithm-based fuzzy c-means clustering algorithm (called GMRFCM), which can significantly reduce the iterative times required to converge, the sensitivity to the initialization, and can obtain a better partition of a data set into c classes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of 2004 International Conference on Machine Learning and Cybernetics : August 6-29, 2004, Worldfield Convention Hotel, Shanghai, China Jg. 4; S. 2069 - 2073 vol.4
Hauptverfasser: Yun-Ying Dong, Yun-Jie Zhang, Chun-Ling Chang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 2004
Schlagworte:
ISBN:0780384032, 9780780384033
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a multistage random sampling genetic-algorithm-based fuzzy c-means clustering algorithm (called GMRFCM), which can significantly reduce the iterative times required to converge, the sensitivity to the initialization, and can obtain a better partition of a data set into c classes. At the first of this algorithm, it uses the multistage random sampling fuzzy c-means clustering algorithm (MRFCM) to produce an initial population; then applies this population on the improved fuzzy genetic cluster algorithm (GFGA) to perform genetic operations. In this way, the proposed algorithm in this paper can have strong global and local searching capability and it is especially significant for high-dimensional and large data sets. Experiments are given in the last of this paper. It is observed that the proposed algorithm in this paper searches better than MRFCM in the iterative times required to converge and the final objective function value.
ISBN:0780384032
9780780384033
DOI:10.1109/ICMLC.2004.1382136