Normalized lattice algorithms for least-squares FIR system identification
Recently developed algorithms for least-squares identification of autoregressive models are extended in this paper so as to facilitate least-squares identification of finite impulse-response models. The algorithms belong to the class of square-root normalized lattice algorithms, hence they share the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on acoustics, speech, and signal processing Jg. 31; H. 1; S. 122 - 128 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.1983
|
| Schlagworte: | |
| ISSN: | 0096-3518 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recently developed algorithms for least-squares identification of autoregressive models are extended in this paper so as to facilitate least-squares identification of finite impulse-response models. The algorithms belong to the class of square-root normalized lattice algorithms, hence they share the computational efficiency and good numerical behavior of the latter. Two versions are presented-one for identifying time-invariant models and the other for tracking time-varying parameters. New lattice-form realizations of the identified FIR models are given. The general framework is then specialized to the important cases of prediction and smoothing. |
|---|---|
| ISSN: | 0096-3518 |
| DOI: | 10.1109/TASSP.1983.1164012 |