Normalized lattice algorithms for least-squares FIR system identification
Recently developed algorithms for least-squares identification of autoregressive models are extended in this paper so as to facilitate least-squares identification of finite impulse-response models. The algorithms belong to the class of square-root normalized lattice algorithms, hence they share the...
Uloženo v:
| Vydáno v: | IEEE transactions on acoustics, speech, and signal processing Ročník 31; číslo 1; s. 122 - 128 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.1983
|
| Témata: | |
| ISSN: | 0096-3518 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recently developed algorithms for least-squares identification of autoregressive models are extended in this paper so as to facilitate least-squares identification of finite impulse-response models. The algorithms belong to the class of square-root normalized lattice algorithms, hence they share the computational efficiency and good numerical behavior of the latter. Two versions are presented-one for identifying time-invariant models and the other for tracking time-varying parameters. New lattice-form realizations of the identified FIR models are given. The general framework is then specialized to the important cases of prediction and smoothing. |
|---|---|
| ISSN: | 0096-3518 |
| DOI: | 10.1109/TASSP.1983.1164012 |