A redundant binary Euclidean GCD algorithm

An efficient implementation of the Euclidean GCD (greatest common divisor) algorithm employing the redundant binary number system is described. The time complexity is O(n), utilizing O(n)4-2 signed 1-b adders to determine the GCD of two n-b integers. The process is similar to that used in SRT divisi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer Arithmetic 1991 IEEE Symposium On s. 220 - 225
Hlavní autori: Parikh, S.N., Matula, D.W.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE Comput. Soc. Press 1991
Predmet:
ISBN:0818691514, 9780818691515
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An efficient implementation of the Euclidean GCD (greatest common divisor) algorithm employing the redundant binary number system is described. The time complexity is O(n), utilizing O(n)4-2 signed 1-b adders to determine the GCD of two n-b integers. The process is similar to that used in SRT division. The efficiency of the algorithm is competitive, to within a small factor, with floating point division in terms of the number of shift and add/subtract operations. The novelty of the algorithm is based on properties derived from the proposed scheme of normalization of signed bit fractions. The implementation is well suited for systolic hardware design.< >
ISBN:0818691514
9780818691515
DOI:10.1109/ARITH.1991.145563