A fast distributed algorithm for mining association rules

With the existence of many large transaction databases, the huge amounts of data, the high scalability of distributed systems, and the easy partitioning and distribution of a centralized database, it is important to investigate efficient methods for distributed mining of association rules. The study...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel and Distributed Information Systems, 4th International Conference s. 31 - 42
Hlavní autoři: Cheung, D.W., Jiawei Han, Ng, V.T., Fu, A.W., Yongjian Fu
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 1996
Témata:
ISBN:9780818674754, 081867475X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the existence of many large transaction databases, the huge amounts of data, the high scalability of distributed systems, and the easy partitioning and distribution of a centralized database, it is important to investigate efficient methods for distributed mining of association rules. The study discloses some interesting relationships between locally large and globally large item sets and proposes an interesting distributed association rule mining algorithm, FDM (fast distributed mining of association rules), which generates a small number of candidate sets and substantially reduces the number of messages to be passed at mining association rules. A performance study shows that FDM has a superior performance over the direct application of a typical sequential algorithm. Further performance enhancement leads to a few variations of the algorithm.
ISBN:9780818674754
081867475X
DOI:10.1109/PDIS.1996.568665