A current-mode approach to CMOS neural network implementation
CMOS equivalents of the synapse and the neuron are proposed for LSI implementation of an adaptive analog neural network. The synapse is a multiplying digital-to-analog converter based on an R-2R ladder and the neuron consists of the second-generation current conveyor. Prototype chips fabricated inde...
Uloženo v:
| Vydáno v: | 1997 3rd International Conference on Algorithms and Architectures for Parallel Processing : ICA³PP/97 : Melbourne, Australia, December 10-12, 1997 s. 625 - 637 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
01.01.1997
|
| Témata: | |
| ISBN: | 0780342291, 9780780342293 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | CMOS equivalents of the synapse and the neuron are proposed for LSI implementation of an adaptive analog neural network. The synapse is a multiplying digital-to-analog converter based on an R-2R ladder and the neuron consists of the second-generation current conveyor. Prototype chips fabricated independently using 0.6 /spl mu/m CMOS process have confirmed the wideband signal processing capability owing to a fully current-mode approach. Detailed analyses of measured performances have also given the design criteria for fully parallel implementation. |
|---|---|
| ISBN: | 0780342291 9780780342293 |
| DOI: | 10.1109/ICAPP.1997.651528 |

