Multiple hypotheses tracking based distributed fusion using decorrelated pseudo measurement sequence

A joint probabilistic data association based algorithm for multi-target tracking in clutter using the distributed tracking architecture has been proposed recently. The algorithm uses the decorrelated state estimates or equivalent pseudo measurements. This paper extends the previous approach to the m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2004 American Control Conference Proceedings; Volume 5 of 6 Ročník 5; s. 4750 - 4751 vol.5
Hlavní autori: Mallick, M., Pao, L.Y., Chang, K.C.
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway NJ IEEE 01.01.2004
Evanston IL American Automatic Control Council
Predmet:
ISBN:9780780383357, 0780383354
ISSN:0743-1619
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A joint probabilistic data association based algorithm for multi-target tracking in clutter using the distributed tracking architecture has been proposed recently. The algorithm uses the decorrelated state estimates or equivalent pseudo measurements. This paper extends the previous approach to the multi-target tracking problem in clutter with probability of detection less than unity using the track-oriented multiple hypotheses tracking framework. We present multiple hypotheses distributed tracking algorithms for track initialization, gating, hypothesis generation, track update, computation of track likelihood, formation of global hypothesis, and pruning using the pseudo measurement formulation.
Bibliografia:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISBN:9780780383357
0780383354
ISSN:0743-1619
DOI:10.23919/ACC.2004.1384062