Possibilistic Fuzzy C-means clustering on medical diagnostic systems

Classification or Clustering is the task of grouping similar objects based on the similarity among the individuals. The techniques using in clustering are mostly unsupervised methods. In this study, Possibilistic Fuzzy C-means (PFCM) clustering technique is used to classify the patients into differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2014 International Conference on Contemporary Computing and Informatics (IC3I) S. 1125 - 1129
Hauptverfasser: Simhachalam, B., Ganesan, G.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2014
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification or Clustering is the task of grouping similar objects based on the similarity among the individuals. The techniques using in clustering are mostly unsupervised methods. In this study, Possibilistic Fuzzy C-means (PFCM) clustering technique is used to classify the patients into different clusters of thyroid diseases. Further, the results of Possibilistic Fuzzy C-means clustering algorithm and Fuzzy c-Means clustering (FCM) algorithm are compared according to the classification performance. The results exhibit that the Possibilistic Fuzzy C-means clustering algorithm performs well.
DOI:10.1109/IC3I.2014.7019729