Ant Colony Optimization algorithm for robot path planning
Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Opt...
Uloženo v:
| Vydáno v: | 2010 International Conference On Computer Design and Applications Ročník 3; s. V3-436 - V3-440 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
01.06.2010
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Optimization) algorithm is an optimization technique based on swarm intelligence. This paper investigates the application of ACO to robot path planning in a dynamic environment. Two different pheromone re-initialization schemes are compared and computer simulation results are presented. |
|---|---|
| DOI: | 10.1109/ICCDA.2010.5541300 |