A superparallel image filtering digital-pixel-sensor employing a compressive multiplication technique
A full-pixel parallel image filtering architecture is developed based on the digital-pixel-sensor. A compressive multiplication technique is employed to accelerate the processing speed. As a result, speed-ups from 3.2 to 5.2 were achieved for Gaussian kernels ranged from 5×5 to 15×15 in scale-invari...
Uložené v:
| Vydané v: | 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) s. 363 - 366 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
IEEE
01.12.2014
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A full-pixel parallel image filtering architecture is developed based on the digital-pixel-sensor. A compressive multiplication technique is employed to accelerate the processing speed. As a result, speed-ups from 3.2 to 5.2 were achieved for Gaussian kernels ranged from 5×5 to 15×15 in scale-invariant feature transform (SIFT) algorithm. A 108 × 96-pixel sensor was designed using a 0.18 μm CMOS process in a 5 mm×5 mm chip. By simulating the sensor at 100 MHz, the image filtering times for 5×5, 7×7, and 9×9 Gaussian kernels in the SIFT algorithm are 34 μs, 49 μs, and 83 μs, respectively. Such a high processing speed is very important for achieving the real-time performance when filtering high resolution images with large kernels. |
|---|---|
| DOI: | 10.1109/ICECS.2014.7049997 |