Policy Iteration Adaptive Dynamic Programming for Optimal Control of Multi-Player Stackelberg-Nash Games
This paper investigates multi-player Stackelberg-Nash (SN) game problems of nonlinear continuous-time systems via policy iteration adaptive dynamic programming (ADP). To represent different hierarchical roles, the appropriate cost functions of the leader and each follower are designed. By introducin...
Uloženo v:
| Vydáno v: | Chinese Control Conference s. 2393 - 2397 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Technical Committee on Control Theory, Chinese Association of Automation
25.07.2022
|
| Témata: | |
| ISSN: | 1934-1768 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates multi-player Stackelberg-Nash (SN) game problems of nonlinear continuous-time systems via policy iteration adaptive dynamic programming (ADP). To represent different hierarchical roles, the appropriate cost functions of the leader and each follower are designed. By introducing the ADP technique, the policy iteration algorithm is developed to obtain approximate solutions of the coupled HJ equation of each player. Then, the multi-player SN equilibrium is derived to guarantee the stability of the closed-loop system. Furthermore, the developed method is realized by employing the critic neural networks through the gradient-based weight updating algorithm. Finally, simulation example validates the effectiveness of the present method. |
|---|---|
| ISSN: | 1934-1768 |
| DOI: | 10.23919/CCC55666.2022.9901882 |