MoS2 Functionalized Multicore Fiber Probes for Selective Detection of Shigella Bacteria Based on Localized Plasmon

Present study demonstrates the fiber-optic localized surface plasmon resonance (LSPR) based sensitive biosensor for detection of Shigella bacterial species. The proposed sensor is comprised of multi-core fiber (MCF) having seven cores arranged in a hexagonal shape and spliced with single-mode fiber...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of lightwave technology Ročník 39; číslo 12; s. 4069 - 4081
Hlavní autori: Kumar, Santosh, Guo, Zhu, Singh, Ragini, Wang, Qinglin, Zhang, Bingyuan, Cheng, Shuang, Liu, Feng-Zhen, Marques, Carlos, Kaushik, Brajesh Kumar, Jha, Rajan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0733-8724, 1558-2213
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Present study demonstrates the fiber-optic localized surface plasmon resonance (LSPR) based sensitive biosensor for detection of Shigella bacterial species. The proposed sensor is comprised of multi-core fiber (MCF) having seven cores arranged in a hexagonal shape and spliced with single-mode fiber (SMF) for efficient detection. An increase in evanescent waves (EWs) and coupling of modes between MCF cores was achieved by etching process in a controlled manner. The etching process also increases the refractive index sensitivity (RIS) of the proposed sensor. Further, coating with nanomaterials like gold nanoparticles (AuNPs) and molybdenum disulfide (MoS 2 ) helps in the excitation of localized plasmons. Here, Shigella specific oligonucleotide probes are used as a recognition element. The results demonstrate that the proposed sensor can successfully and efficiently detect the Shigella bacterial species with high sensitivity. Shigella in the range of 10 - 100 CFU/mL (colony-forming unit/mL) can cause serious intestinal infection and therefore, its detection in this range is critical. The proposed sensor demonstrates a linearity range from 1 to 10 9  CFU/mL with a detection time of 5 min and a limit of detection (LoD) of 1.56 CFU/mL. The proposed sensing methodology can be a potential alternative to the commercially existing ones in the near future.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2020.3036610