Computation Throughput Maximization for UAV-Enabled MEC with Binary Computation Offloading
Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation off...
Uloženo v:
| Vydáno v: | IEEE International Conference on Communications (2003) s. 4348 - 4353 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.05.2022
|
| Témata: | |
| ISSN: | 1938-1883 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation offloading, where a UAV serves as an aerial edge server and each task of devices is either executing locally or offloading to the aerial edge server as a whole. To provide fairness among different ground devices, we aim to maximize the minimum computation throughput for all devices via the joint design of computing mode selection and UAV trajectory as well as resource allocation. The optimization problem is formulated as a mixed-integer nonlinear problem consisting of binary variables, which is difficult to tackle. The influence of non-binary solutions is penalized with a penalty function, based on which we develop an efficient iteration algorithm to obtain a suboptimal solution via leveraging the penalty successive convex approximation (P-SCA) method and difference of two convex (D.C.) optimization framework, where the algorithm is guaranteed to converge. Extensive simulations are conducted and the results with different system parameters show the effectiveness of the proposed joint design algorithm compared with other benchmark schemes. |
|---|---|
| AbstractList | Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation offloading, where a UAV serves as an aerial edge server and each task of devices is either executing locally or offloading to the aerial edge server as a whole. To provide fairness among different ground devices, we aim to maximize the minimum computation throughput for all devices via the joint design of computing mode selection and UAV trajectory as well as resource allocation. The optimization problem is formulated as a mixed-integer nonlinear problem consisting of binary variables, which is difficult to tackle. The influence of non-binary solutions is penalized with a penalty function, based on which we develop an efficient iteration algorithm to obtain a suboptimal solution via leveraging the penalty successive convex approximation (P-SCA) method and difference of two convex (D.C.) optimization framework, where the algorithm is guaranteed to converge. Extensive simulations are conducted and the results with different system parameters show the effectiveness of the proposed joint design algorithm compared with other benchmark schemes. |
| Author | Zhan, Cheng Liao, Jingrui Gong, Jue Xu, Changyuan |
| Author_xml | – sequence: 1 givenname: Changyuan surname: Xu fullname: Xu, Changyuan email: xcy202009@email.swu.edu.cn organization: Southwest University,School of Computer and Information Science,China – sequence: 2 givenname: Cheng surname: Zhan fullname: Zhan, Cheng email: zhanc@swu.edu.cn organization: Southwest University,School of Computer and Information Science,China – sequence: 3 givenname: Jingrui surname: Liao fullname: Liao, Jingrui email: liaojingrui@email.swu.edu.cn organization: Southwest University,School of Computer and Information Science,China – sequence: 4 givenname: Jue surname: Gong fullname: Gong, Jue email: gj1340172827@email.swu.edu.cn organization: Southwest University,School of Computer and Information Science,China |
| BookMark | eNpNkMtOwzAURA0CiabwBQjJP5Dg6xsn9rJEKVRq1U3Lgk1lJ3ZjlEeVpOLx9VRqF6xGZxZHownITdu1lpAnYBEAU8-LLIuFFCLijPNISZQyVVckAIEykRin8TWZgEIZgpR4R4Jh-GRMcIUwIR9Z1xyOox5919JN1XfHfXViutLfvvG_5951Pd3O3sO81aa2JV3lGf3yY0VffKv7H_rfsXau7nTp2_09uXW6HuzDJadkO8832Vu4XL8ustky9IA4hkIojXGiDILkDpw2jnPDudBJ6UpjGDNpgUlitAEGCLaIlRO85LJAgQpxSh7PXm-t3R1635w27S4_4B9oblTh |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICC45855.2022.9838879 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1538683474 9781538683477 |
| EISSN | 1938-1883 |
| EndPage | 4353 |
| ExternalDocumentID | 9838879 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i133t-559a3469b3182f1fabf22b225a6dfdbb00b7c366bab10131ec49f52d28c353933 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864709904088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:23:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-559a3469b3182f1fabf22b225a6dfdbb00b7c366bab10131ec49f52d28c353933 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9838879 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-16 |
| PublicationDateYYYYMMDD | 2022-05-16 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Communications (2003) |
| PublicationTitleAbbrev | ICC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0052931 |
| Score | 2.288304 |
| Snippet | Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4348 |
| SubjectTerms | Approximation algorithms Autonomous aerial vehicles Benchmark testing binary computation offloading Computational modeling mobile-edge computing (MEC) penalty successive convex approximation (P-SCA) Simulation Throughput Trajectory unmanned aerial vehicle (UAV) |
| Title | Computation Throughput Maximization for UAV-Enabled MEC with Binary Computation Offloading |
| URI | https://ieeexplore.ieee.org/document/9838879 |
| WOSCitedRecordID | wos000864709904088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAXH2B8pwePLrB9bo-6gegB5ACGeCHttk1IlDUIxp9vt7siJl489ZG0TaaZzkzbbz6AaxE7RnSXRlxqFlHtfThFEx5lAhMjhHLUdAPZhBgOk-lUjmpws8HCWGvD5zPbLqrhLd_k2bq4KuvIhHidkHWoC8FLrNb3qcu82YorhE7clZ2HNKXeE2Y-AsS4XQ38xaASDEh__39LH0DrB4mHRhsbcwg1uziCva0kgk14LokZgoTRuKTd8W00UJ_z1wplibxriia3T1EvQKUMGvRSVFzBoruAx0Xbczw695KHr_UtmPR74_Q-qhgTormPNVeRDw8U8QGv9pqKXeyUdhhrr7KKG2e0VzEtMsK5VjouEu3YjErHsMFJRhiRhBxDY5Ev7AkgTq2lTEmsKKEZi7VxjvqCSecPCeJOoVlIafZWJsWYVQI6-7v7HHaLjSie3WN-AY3Vcm0vYSf7WM3fl1dhJ78AeiegCg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgXH2B824NHF9g-drdH3UAgAnIAQ7yQdtsmJAgGwfjzbcuKmHjx1EfSNplmOjNtv_kAbuPQMCJrNIi4ZAGV1ocTNImCLMZExbEwVNU82UTc7SbDIe8V4G6NhdFa-89nuuKq_i1fzbKluyqr8oRYneBbsO2Ys3K01ve5y6zhCnOMTljj1VaaUusLMxsDYlzJh_7iUPEmpHHwv8UPofyDxUO9tZU5goKeHsP-RhrBErysqBm8jFF_Rbxj26gjPsevOc4SWecUDe6fg7oHSynUqafIXcKiB4_IRZtzPBkzmfnP9WUYNOr9tBnknAnB2Eabi8AGCILYkFdaXcUmNEIajKVVWhEpo6RVMhlnJIqkkKFLtaMzyg3DCicZYYQTcgLF6WyqTwFFVGvKBMeCEpqxUCpjqC0YN_aYIOYMSk5Ko7dVWoxRLqDzv7tvYLfZ77RH7Vb38QL23Ka4R_gwuoTiYr7UV7CTfSzG7_Nrv6tf_qajUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=Computation+Throughput+Maximization+for+UAV-Enabled+MEC+with+Binary+Computation+Offloading&rft.au=Xu%2C+Changyuan&rft.au=Zhan%2C+Cheng&rft.au=Liao%2C+Jingrui&rft.au=Gong%2C+Jue&rft.date=2022-05-16&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=4348&rft.epage=4353&rft_id=info:doi/10.1109%2FICC45855.2022.9838879&rft.externalDocID=9838879 |